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ABSTRACT 

 

In this doctoral dissertation, novel colloidal routes were used to synthesize 

nanomaterials with unique features. We have studied the impact of nanoparticle size of 

catalyst, role of high surface area of a photocatalyst, and the effect of varying elemental 

composition of co-catalytic nanoparticles in combination with core-shell plasmonic 

nanoparticles. We have demonstrated how physical and chemical characteristics of 

nanomaterials with these unique features play a role in catalytic reactions, specifically 

the oxidation of CO and the photoreduction of CO2. The first objective of this doctoral 

dissertation involved the preparation of CoO nanoparticles with discrete nanoparticles 

sizes (1-14 nm) using a colloidal thermal decomposition technique. The impact of size of 

CoO for CO oxidation reaction was studied using an in-situ FTIR reactor. By analyzing 

the reaction intermediates observed using in-situ IR, a two-step reaction mechanism was 

proposed. The average values of activation energies of step-1 and step-2 were ~15 

kJ/mol and ~90 kJ/mol that showed step-2 was the rate determining step.  From 

activation energy calculations for the catalysts of different CoO sizes, it was found that 

activation energy increased as nanoparticle size increased. The second objective of this 

doctoral research involved the development of high surface area TiO2 nanoshells using 

polymeric templates. The deposition of TiO2 was achieved by surface functionalization 

procedures. TiO2 was then deposited on colloidal SiO2 after the SiO2 surface was 

modified by grafting poly(NIPAAM) oligomers. TiO2 nanoshell composites possessed 

high surface of ~35 m2/gm. The photocatalytic performances of TiO2 nanoshells and Pt 
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deposited TiO2 nanoshells were evaluated for CO2 photoreduction reaction. Primary 

products from CO2 photoreduction reactions were carbon monoxide and methane. The 

product yield and product selectivity of hydrocarbons produced during CO2 

photoreduction was measured using a home-built FTIR reactor. When Pt was deposited 

on TiO2 nanoshells, the overall yield was nearly doubled and the CH4 selectivity nearly 

quadrupled.  The third objective pursued in this research project was to synthesize Ag, 

Pt and bimetallic Ag-Pt nanoparticles to demonstrate the role of elemental composition 

of metal co-catalysts for CO2 photoreduction reaction. The novel bimetallic nanoparticles 

played an important role in improving product selectivity in the photocatalytic reduction of 

CO2. Bimetallic Ag-Pt nanoparticles synthesized with low Pt content had 4-5 times higher 

CH4 selectivity compared to native TiO2. The final objective was to prepare 

Ag(core)/SiO2(shell) nanoparticles with specific core-shell structure to enhance 

photoactivity of TiO2 during catalytic reactions. Ag@SiO2 core-shell nanoparticles have 

plasmonic character that helped to improve product yield by increasing the number of 

electron-hole pair generations. When bimetallic Ag-Pt nanoparticles were used in 

combination with core-shell Ag@SiO2 plasmonic nanoparticles, the overall yield 

increased ~8-fold compared to native TiO2.  
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CHAPTER 1: COLLOIDAL COMPOSITES FOR CATALYSIS 

 

1.1 Nanomaterials: Properties and applications  

In recent years, nanomaterials have been the subject of extensive interest due 

their potential uses in a wide range of areas such as electronics, therapeutics, 

diagnostics, catalysis, and sensing. The versatility of nanomaterials stems from their 

unique optical, magnetic, thermal, and mechanical properties that result from their small 

dimensions. Some of the significant characteristics that determine the structure-property 

relationships in nanomaterials are size, shape, elemental composition, and geometric 

structure.  

 

The extensive literature on gold (Au) nanocomposites is one example wherein 

these structure-property relationships can be observed. For example, catalytic reactions 

performed using bulk and nanoparticles of Au demonstrate the critical role of size [1-3]. 

Au nanoparticles have been found to be highly active as catalysts for water-gas shift 

reaction[1] and carbon monoxide (CO) oxidation reaction[2, 3], whereas bulk Au is 

virtually inactive. In other reports different shapes such as nanospheres, nanocubes, 

truncated nanocubes, triangular nanoprisms, and nanorods have been used to show 

unique applications in biological imaging and biomedicine[4-6].  

 

Elemental composition of a catalyst material is also an important factor that 

determines the function. For instance, in a study on gold catalysts, Scott and coworkers 
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found that by alloying Au nanoparticles with Pd metal, the activity of CO oxidation 

reaction was increased[7].  In another study, Mott andi 8 coworkers[ ] found the chemical 

interaction of reactants was significantly different during electro-oxidation of methanol 

when Au nanomaterial composition was alloyed with platinum (Pt).  

 

The influence of geometric structure of nanomaterials is also evident from studies 

on core-shell particles of Au(core)-silica shell (Au@SiO2) as well as the reverse 

geometry, namely SiO2@Au core-shell particles. These core-shell particles, Au@SiO2 

and SiO2@Au, have distinct optical properties. Colloidal Au nanoparticles suspended in 

an aqueous medium without aggregation have an optical absorbance typically near the 

520nm wavelength region[9, 10]. Deposition of thin SiO2 shell can cause a red-shift of 

the peak position to ~550nm[9, 11].  In contrast, when the structure of nanoparticles is 

reversed to SiO2@Au core-shell structure, the visible absorbance can red shift to near-

infrared (IR) regions[12, 13].  Since skin, tissue, and hemoglobin have a transmission 

window in the range from orange-red of visible wavelengths to near-IR, SiO2@Au with a 

characteristic optical response in the IR can be used for photo-thermal therapy 

applications[12, 14, 15].  

 

Therefore, the ability to tune physical, chemical and structural properties of 

nanomaterials leads to a multitude of potential applications. Within this multiplicity of 

applications, the research project described in this dissertation focuses on chemical 

catalysis. 

 



www.manaraa.com

3 
 

1.2 Role of key features of nanomaterials in chemical catalysis 

 Nanomaterials have long been used as a catalyst of various reactions since 

nano-size particles and clusters maximize the sites for catalytic reactions. In the last 

century, nanomaterials used for catalysis have revolutionized many industrial 

applications. For example, ZSM-10, a nanostructured zeolite material was developed by 

controlling features such as size, structure, shape and composition. Since then there has 

been rampant use of ZSM-10 in the petrochemical industries for processing several 

billions of barrels of petroleum and chemicals on an yearly basis[16]. Another example is 

from the refinery industry that started to utilize precious metal Pt nearly fifty years ago for 

increasing the octane number of gasoline through a process called platforming. Prior to 

the discovery of using Pt, refineries added lead (Pb) metal or benzene compounds to 

meet octane number requirements combustion engines. Platforming was beneficial to 

eliminate environmentally unfriendly Pb and benzene; however, Pt is an expensive metal 

a relatively low catalyst life. Since then, several researchers have attempted to improve 

performance and to reduce catalyst cost by engineering the size and composition of the 

catalyst. According to a study in 2005, the market for reforming catalyst is about 

$100M[16]. Due to the increasingly stringent regulatory prerequisites, researchers are 

striving to find ways to improve the performance of refinery processes. Engineered 

nanomaterials have the potential to allow catalyst standards become at par with 

regulatory standards and to provide a safer and cleaner environment. 

 

The great interest in catalysts with enhanced longevity, improved activity, and 

product selectivity has led to an increased focus on how physical and chemical 

characteristics of nanomaterials can influence reactions. In spite of extensive research, 
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clear and systematic principles are yet to be determined regarding paths by which a new 

nanomaterials catalyst performs in the course of a specific reaction.   

 

In this section, we briefly look at the scientific research on the role of four 

important features (figure 1.1) of nanomaterials; size, surface area, elemental 

composition and geometrical structure in catalysis.  

 

1.2.1 Size  

As the size of a nanoparticle decreases, the percentage of atoms on the surface 

with low coordination number (Coordination number of an atom is defined as the number 

of nearest neighboring atoms to the central atom) increases. This has two 

implications.First, only surface atoms are useful for catalysis, therefore nanomaterials 

lead to increased number of active sites per unit mass of catalyst material. For 

nanomaterials, the percentage of atoms on the surface and the percentage of atoms at 

the step edges or corners increase exponentially with a decrease in size, when size 

decreases from ~30nm to 1nm. This is very beneficial from an economic standpoint if the 

catalyst metal used is expensive. Second, the atoms present in corners or edges of a 

nanoparticle with low coordination numbers possess unique electronic properties 

compared to an atom on a flat surface with high coordination number.  For example, 

studies on ruthenium, Ru(001), single crystal by Dahl and coworkers[17] have shown 

high reactivity of atoms with low coordination numbers. They have demonstrated using 

experiments and density functional theory (DFT) that dissociation of nitrogen (N2) on 

step sites was a billion (109) times greater than on a terrace site. This is because the 

energetics of the surface atoms on a terrace or a corner site is different than the effect of 

the interaction of adsorbing molecule with the surface atoms. Therefore, nanomaterials 
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of different sizes can be potentially used in catalysis to tune the reactivity of the chemical 

reactions. 

 

One of the most common reactions that has been used to understand the role of 

nanoparticle size is CO oxidation reaction, which is a reaction relevant from an industrial 

and scientific point of view. Industrial applications include detoxification CO gas 

pollutants from automobile exhausts, gas cylinders used in hospitals, and industrial flue 

gases. Another important application is in fuel cell industry to preferentially oxidize CO in 

a hydrogen (H2) feed-gas containing impurities of CO. From a scientific point of view, the 

reaction of carbon monoxide involves a molecular level interaction of a simple CO 

molecule that allows us to probe fundamental theories in catalysis.  

 

Various researchers have studied different types of nanomaterials and the role of 

size of the catalyst on CO oxidation reaction. Haruta’s research group [18, 19] has 

studied the effect of nanoparticle size for CO oxidation reaction on Au and Pt. They 

found that turn-over frequency (TOF) increases for Au but decreases for Pt when the 

nanoparticle size decreases. Studies by McCarthy and coworkers[20] on Pt 

nanoparticles have shown a similar trend where larger Pt nanoparticle have higher 

catalytic activity. Shaikhutdinov and coworkers[21] showed by adsorption measurements 

that smaller Au nanoparticles adsorb CO more strongly. On the contrary, a theoretical 

thermodynamic model for Pt nanoparticle developed by Lu and coworkers[22] illustrated 

that activation energy decreases as Pt nanoparticle size decreases. The calculations of 

activation energy were based on changes in the cohesive energy and electron affinity 

between the nanoparticle atoms as size varies. Overbury and coworkers[23] report the 

opposite trend for Au where the reaction TOF decreased as size was decreased from 10 
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to 2nm. Furthermore, Valden and coworkers[24] found that there was a maximum TOF 

for Au particles with a size of 3.5nm and lower activity for other sizes below and above 

3.5nm. Grass and coworkers[25] have investigated rhodium (Rh) nanoparticles and 

showed improved activity for smaller nanoparticles. In contrast, studies on Ru 

nanoparticles by Joo and coworkers[26], and irridum (Ir) nanoparticles by Boudart and 

coworkers[27] showed that larger Ru and Ir particles have higher activity.  

 

The studies on Au, Pt, Ru, Rh, Ir and other noble metals indicate that for CO 

oxidation reaction the role of nananoparticle size cannot be predicted for all metal 

elements due to the wide variation in results. Nørskov research group [28, 29] have used 

density functional theory calculations to predict reaction rates of different metal catalysts 

by applying Sabatier principles.  For instance, if the adsorption energy of the reactant is 

too low, it means that the interaction is weak and the coverage of the reactant on the 

catalyst surface would be low leading to low rates of reaction. On the other hand, if the 

interaction is too strong, the ability of the reactant to dissociate or otherwise take part in 

a reaction can be hindered again leading to lower reaction rates. This leads to a volcano 

type behavior when the TOF is plotted as a function of absorption energy of the reactant 

on the surface. Sabatier plots of 12-atom clusters composed of different metals were 

also simulated to compare the above results obtained from extended metal surface 

catalysts. It was shown that platinum and palladium are the most active catalysts for 

extended surfaces and gold is the most active for 12-atom clusters[28]. The above 

mentioned experimental and theoretical studies have shown the reactivity of noble metal 

extended surfaces and 12-atom clusters. However, performing computer simulations on 

nanoparticles in the size range of 1-100nm to understand reactivity is highly challenging 

since they require extreme computational complexity. From a practical standpoint, 
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metals of first row transition elements are more inexpensive and widely available than 

noble metal counterparts. There are fewer reports in the literature available on first row 

transition metals presumably because the preparations of first row transition metals are 

more challenging due to their poor stability from agglomeration and difficulty to prepare 

them in discrete sizes.  

 

Thus, there is a need to develop methods for nano-sized catalyst synthesis using 

inexpensive metals such as iron (Fe), cobalt (Co) or nickel (Ni) to investigate the role of 

the size of these catalysts on CO oxidation. In this dissertation, we provide insights into 

both of these challenges for the specific case of Co. 

 

1.2.2 Surface area  

Another feature that attracts the use of nanoparticles and nanomaterials, in 

general, for catalytic applications is the enhanced surface-to-volume ratio. High surface 

area of a catalyst material is beneficial because it increases the total number of active 

sites available for reactant molecules that helps to enhance the overall rate of reaction. 

In chemical catalysis, increasing both surface area and porosity promotes catalytic 

activity; therefore, a number of studies have pursued novel routes for catalyst 

preparation. Ledoux and coworkers[30] have synthesized high surface metal carbides 

and shown increase rate of reaction for isomerization or dehydrogenation of 

hydrocarbons due to the increase in specific surface area. Syntheses of porous 

structures of inorganic materials such as SiO2, zirconia (ZrO2), and ceria (CeO2) have 

also been reported. Reports on SiO2 by Zhao and coworkers have shown that highly 

porous structures of tunable morphologies such as fiber-, rope-, doughnut-, sphere-, 

gyroid-, and discoid- like shapes can be synthesized[31]. Terribile and coworkers 
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demonstrated preparation and characterization of high surface area mesoporous CeO2 

with pore sizes of 40Å[32]. Chuah and coworkers have studied the preparation 

conditions that influence porosity and surface area of ZrO2 catalyst[33]. In all of these 

studies, the porosity and surface area enhancement has been found to be beneficial for 

the reaction rate kinetics.  

 

In the special case of photocatalysis, since reactions are initiated by the 

interaction of light on the surface of the catalyst, it is critical to increase the exposed 

surface area. Porous structures contribute towards increasing internal surface area, but 

photoreactions may not be improved since light can be blocked from reaching the 

porous interiors.  Thus, great care has to be taken for choosing catalysts and their 

supports for photochemical reactions. Amongst the many photocatalyst that have been 

investigated, titania (TiO2) is a popular choice because it is cheaply available, highly 

stable and non-toxic.  

 

Exhaustive physical characterization[34, 35] of TiO2 and photocatalytic 

reactions[36-40] have been done by several researchers since its discovery as a 

photocatalyst by Fujishima and Honda[41] nearly half a century ago. Precipitation and 

electrochemical methods have been developed for creating highly ordered 3-D porous 

structures, coatings, films, nanotubes, nanoparticles of TiO2 by careful crystallization and 

calcination[42-49]. Colon and coworkers have used a precipitation technique to deposit 

TiO2 nanoparticles on templates of highly porous activated carbon[47]. Macák and 

coworkers have synthesized highly porous TiO2 nanotubes with high aspect ratios by 

tailoring the conditions during electrochemical anodization of titanium[42]. Chu and 

coworkers also applied electrochemical anodization techniques to synthesize a three-
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dimensional highly porous photocatalyst composite of TiO2 with SiO2, tellurium oxide 

(TeO2), and alumina (Al2O3)[46]. Grimes’ research group synthesized self-aligned highly 

ordered TiO2 nanotube arrays[48] by anodization methods and found that nanotubes 

were useful for catalyst for the photoreduction of CO2 to synthetic hydrocarbons[50].   

 

While there is sufficient information in the literature to create highly porous 

structures, there are fewer reports on TiO2 photocatalyst where the focus is to increase 

exposed surface area rather than porous interiors. Use of femtosecond lasers, 

lithography, or plasma and chemical etching techniques can be approaches to create 

high surface nano-features to increase the exposed surface area[51-55]. However, these 

methods are either slow or highly energy intensive. In this dissertation, we propose to 

apply colloidal methods to create TiO2 photocatalyst with high exposed surface area. 

 

1.2.3 Elemental composition 

Choosing a right metal element for catalysts is critical since this determines the 

activity and selectivity of the reaction. Studies indicate that alloys or multi-metallic 

catalyst particles exhibit more favorable reaction kinetics compared to catalysts 

composed exclusively of their parent metal element[56]. This can sometimes be 

explained in terms of the work function of the final alloy nanoparticle compared to the 

work function of the original parent metals. The introduction of a promoter metal on the 

surface of a catalyst, for example, causes a shift in the d-band center due to the shift in 

the electron density from the metal with filled d-states to the other metal with less filled d-

states. The shift in the d-band center affects the interaction of adsorbing molecules with 

the catalyst surface and results in significant alteration in activation energies and 

catalytic activities. 
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One of the best examples of bimetallic nanoparticles used in photocatalytic 

reduction of nitrate-to-nitrite is palladium-copper (Pd-Cu) bimetallic particles[57, 58] The 

Pd-Cu bimetallic photocatalyst composite is beneficial in removing nitrate toxicity in 

water that otherwise causes a disease to infants called the blue baby syndrome. Another 

example is the addition of manganese (Mn) to Fe based Fischer-Tropsch Synthesis 

(FTS), which leads to an improvement in light olefin production compared to the 

unpromoted Fe catalyst[59]. Addition of molybdenum (Mo) to Fe based FTS catalyst has 

shown higher stability and longevity[60].   Promoters of chromium (Cr), Mn, Mo, tantalum 

(Ta), vanadium (V), tungsten (W) and zirconium (Zr) have been also investigated by 

Lohitharn and coworkers for Fe based FTS catalysts[61]. Lee and coworkers have found 

that there was an increase in activity and stability of catalysts for oxygen reduction 

reaction in proton exchange membrane cells when catalysts were prepared by alloying 

Pt and Pd[62]. There are numerous other examples of different alloys used for a variety 

of reactions.  

 

In this dissertation, our focus is to design an alloy co-catalyst for assisting TiO2 

based photocatalyst for carbon dioxide (CO2) photoreduction reaction. Taking into 

consideration CO2 photoreduction reaction specifically, studies on alloyed metal 

catalysts have not been reported yet. We intend to design an alloy catalyst nanomaterial 

that is inexpensive, possesses enhanced catalytic activity, and shows high product 

selectivity for CO2 photoreduction.  

 

1.2.4 Geometrical structure  

The designing of geometric structure of a catalyst nanomaterials is a crucial 

element that determines overall catalytic behavior of the catalyst. For example, Kamat’s 
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research group have synthesized catalysts composed of metal@TiO2 core-shell and 

metal/TiO2 sandwich structures and found that a metal@TiO2 core-shell structure 

nanoparticles were less photo-active than a metal-TiO2 sandwich structure[63]. It was 

postulated that when a metal is in contact with a semiconductor, a charge separation 

occurs during photocatalytic reactions. In both cases of metallic-core and the metallic-

sandwich composites, the metal traps the photo-excited electrons during the charge 

separation. However, the charge accumulates in a core-shell structure over time without 

being discharged into an electrolyte, which reduces the overall reactivity. Having a metal 

oxide shell is not always a disadvantage. For instance, a shell structure may be useful in 

other cases, to protect an inner metal core from oxidation during catalysis, which cannot 

be realized in sandwich structure[64]. Cheng and coworkers have shown that oxidation 

of Fe was reduced by having an inert SiO2 shell around the nanoparticle surface and 

preserved the magnetic properties[65]. Therefore, the design of the geometric structure 

of a nanomaterial is a specific purpose reaction and that particular reaction.  

 

In the field of photocatalysis, the use of plasmonic metals as catalysts is gaining 

interests. Awazu and coworkers have found that there was 8-fold increase in the 

photocatalytic degradation of methylene blue by using plasmonic Ag nanoparticles 

embedded inside TiO2 semiconductor[64]. Akimov et al.[66] and Hägglund et al.[67] 

have designed thin-film solar cells with silver (Ag) nanoparticles as sub-wavelength light 

trapping sites to increase the photocurrent generated in the solar cells. An and 

coworkers have used Ag and silver chloride (AgCl) hybrid nanoparticles that exhibited 

high catalytic performance under visible light and sunlight for decomposing organics[68]. 

Linic research group has also reported that silver nanostructures drive catalytic reactions 
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such as ethylene epoxidation, CO oxidation, ammonia (NH3) oxidation and degradation 

of methylene blue[69-71].  

 

Silver and other plasmonic nanoparticles improve catalytic activity by the 

phenomenon of localized surface plasmon resonance (SPR), which is caused when 

there is a frequency match between the vibrations of conduction electrons of the metal 

with the frequency of incident light. In this dissertation, we will describe the design of a 

plasmonic Ag nanoparticle to perform CO2 photoreduction reaction compared to 

previous studies that studied only photo-oxidation reactions. The SPR effect produced in 

the plasmonic nanoparticles will help boost electron-hole pair generations in TiO2 

photocatalyst. In order to avoid discharge of photo-electrons from TiO2, design 

considerations such as creating an inert shell around Ag nanoparticles will be 

considered. The colloidal techniques used in this dissertation also allow optimization of 

the shell thickness of the insulating spacer to effectively reduce discharging of photo-

excited charges with minimum dampening of SPR effect.  

 

1.3 Research focus: Engineering colloidal nanomaterial for catalysis 

Catalytic reactions can be influenced greatly by nanomaterial features such as 

size, surface area, elemental composition and geometric structure as detailed in the 

previous sections. In our research, colloidal methods have been used to synthesize 

nanomaterials with precise control of the key nanomaterial features to allow a systematic 

understanding of how these key features influence catalytic reactions of our interest. 

Other common methods of nanomaterial preparation are gas condensation, chemical 

vapor deposition, mechanical attrition and electrodeposition methods. Gas condensation 

and chemical vapor deposition methods involve vaporizing a metal or a non-metallic 
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material and condensing the precursor material on a substrate. These methods are very 

slow, energy intensive, and limited by material precursors that cannot be vaporized 

easily. Lithography or focused ion beams have been used to deposit or remove material 

for creating nano-features on a surface. High energy ball mills use mechanical attrition to 

crush down larger particles to smaller sizes. This technique has also recently received 

attention in the field of temperature controlled mechanical alloying. For example, it is not 

otherwise possible to alloy aluminum (Al) and Ta due to their different melting 

temperatures[72]. However, this process also requires high energy to operate and the 

polydispersity in size of the alloys is one of the major drawbacks. Electrodeposition 

methods are used to create uniform coating and high purity nanoporous materials. But 

this method is also a slow and expensive process. On the other hand, colloidal 

techniques are economical and require less sophisticated setup. Therefore, colloid 

methods can be more promising for commercial industrial application because of the 

convenience and scalability.  

 

Below, we broadly describe the scope of this research project to study the 

influence of nanomaterial features on catalytic reactions. Some details of the catalyst 

nanomaterials and the catalytic reactions used are also mentioned. 

 

Firstly, we have studied the role of nanoparticle size of cobalt oxide for CO 

oxidation reaction. Cobalt metal is comparatively cheaper than the other noble metal 

counterparts. Xie and coworkers[73] have shown recently the high activity of nano-rod 

shaped cobalt oxide for CO oxidation reaction that suggests low coordination cobalt 

oxide sites play an important role in catalysis. We have synthesized cobalt oxide 

nanoparticles of discrete sizes (1-14nm) using colloidal thermal decomposition technique 
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to vary the percentage of low coordinated sites as nanoparticle size was changed. 

Surface modified SiO2 supports were prepared and cobalt oxide nanoparticles were 

decorated on SiO2 via self-assembly techniques. These Co/SiO2 nanocomposites were 

then used to study the CO oxidation reaction. Advanced in-situ FTIR tools were used to 

measure both surface species and bulk gases during the reaction to relate the impact of 

cobalt nanoparticle size with CO oxidation activation energies.  

 

Secondly, colloidal techniques were used to synthesize TiO2 photocatalyst 

nanoshells with high surface area to convert CO2 to hydrocarbon fuels. Other 

conventional methods such as layer-by-layer deposition or precipitation deposition 

methods have been shown to deposit TiO2 shells on SiO2 supports. However these 

conventional methods require multiple deposition steps to create a thick enough shell. 

Our strategy to deposit TiO2 on SiO2 using a polymer poly(NIPAAM)-SiO2 core-shell 

template colloids is a quick one-step process where shell thickness is determined by the 

thickness of polymer template. During the calcination step the polymer template was 

burned off leaving behind nanoshells of crystalline TiO2 with high surface roughness.  

 

Thirdly, we have prepared bimetallic Ag-Pt nanoparticles to deposit on TiO2 to 

improve catalytic selectivity of products during CO2 photoreduction reaction. Pt is a 

traditionally used metal that has been used from the past as a catalyst for a multitude of 

reactions as well as for CO2 photoreduction as a co-catalyst deposited on TiO2. [50, 74] 

When a metal co-catalyst such as Pt is in contact with a semiconductor, it allows easy 

and quick transfer of photo-excited charges from TiO2 to the electrolyte. [63, 74-82]  Pt is 

an expensive metal and has poor product selectivity. Our focus was to integrate catalytic 

properties of Pt with a relatively cheaper metal Ag for photocatalytic application. 



www.manaraa.com

15 
 

According to the APMEX Inc, the average value of Ag is ~50 times less that Pt[83]. 

When Ag and Pt metals are compared, the Ag nanoparticles possess a strong optical 

absorbance band in the UV-Vis region while Pt nanoparticles have no such optical 

behavior. Using colloidal techniques we have synthesized Ag-Pt bimetallic nanoparticles 

that showed high catalytic activity and product selectivity for photocatalytic reactions. 

The new bimetallic nanoparticle is an improved photocatalyst since it encompasses 

catalytic properties of both Ag and Pt elements.  

 

Finally, we have designed core-shell Ag@SiO2 structured nanoparticles with 

surface plasmon characteristics. These core-shell nanoparticles induce surface plasmon 

resonance effect upon light irradiation causing an electric field enhancement near the 

vicinity of the nanoparticles. This energy was conveyed for electron-hole pair generation 

in the TiO2 during photocatalytic reduction of CO2. The reason for choosing Ag was 

based on the fact that the plasmon band was near the wavelength of light that excites 

TiO2. By creating an insulating shell around the Ag core, the discharge of photo-excited 

charges from TiO2 surface to Ag core was avoided.  

 

The organization of this dissertation describing how nanoparticle size, surface 

area, elemental composition and geometric structure were probed to study the role of 

these features on catalytic reactivity is as follows. Chapter 2 deals with the synthesis of 

cobalt oxide (CoO) nanoparticles, surface modification of SiO2 supports and 

understanding the role of cobalt oxide nanoparticle size on CO oxidation reaction. Use of 

colloidal and self-assembly routes for the synthesis is provided in the second chapter. 

Chapter 3 details the preparation of TiO2 nanoshells with high surface area and its 

utilization for CO2 photoreduction reaction.  Chapter 4 describes the preparation of 
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Ag@SiO2 core-shell plasmonic nanoparticles and co-catalyst Ag-Pt nanoparticles for 

improvement of CO2 photoreduction activity and product selectivity. Finally, Chapter 5 

summarizes the various synthesis and catalytic reactions on nanoscale materials as well 

as provides some insights on future prospects and recommendations.  
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Figure 1.01. Key features of nanomaterials in catalysis 
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CHAPTER 2: COLLOIDAL COBALT OXIDE AND SILICA NANOCOMPOSITES FOR 

CARBON MONOXIDE OXIDATION: IMPACT OF SIZE 

 

In this chapter, a detailed description is given on synthesis, characterization and 

CO oxidation reaction studies of CoO/SiO2 nanocomposites. Our objective was to 

investigate the effect of CoO nanoparticle size for carbon monoxide oxidation reaction 

using in-situ FTIR spectrophotometry. CoO nanoparticles were immobilized on the 

surface of Stöber SiO2 catalyst support by surface functionalization methods to create a 

model catalyst. A host of characterization techniques were used to completely 

understand the physicochemical and catalytic properties. Microscopy, spectroscopy, and 

scattering techniques were used to gain insight into the particle size, shape, crystallinity, 

and chemical functional groups present. Temperature programmed in-situ surface IR 

experiments allowed us to measure activation energies for CO oxidation elementary 

steps and understand the role of nanoparticle size on kinetic parameters. 

 

2.1 Experimental details and material characterization 

2.1.1 Synthesis of colloidal SiO2 support 

To study the effect of cobalt oxide nanoparticle size for CO oxidation, 

nanoparticles were supported on SiO2 substrate. A non-porous SiO2 colloidal support 

was chosen rather than a porous support structure. The primary reason for choosing a 

non-porous support is because porous catalyst support structures becomes a barrier for 

the transfer of reactant/product species from the catalyst surface into the gas phase. [84] 
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Since repeated adsorption and desorption of radicals may take place within the pores, 

the use of a porous supported catalyst becomes more complex and not ideal for 

fundamental studies of catalytic reactions such as one studied here. 

 

Sub-micron non-porous spherical SiO2 colloids were synthesized using a 

modified Stöber process[85]. The synthesis procedure is well documented in literature.  

Typically, 3.14 ml of 28-30 wt% NH4OH was added to an ethanol-water mixture and 

equilibrated for 30 min. An aliquot of 6ml TEOS was added and stirred for 6 hours at 

room temperature to yield monodisperse sub-micron SiO2 particles. The NH4OH in 

solution helps to control the charge of the SiO2 colloids. The SiO2 colloid solution was 

purified by centrifuging the solution at 7,000 rpm for 30 minutes and the resulting residue 

was washed repeatedly with water. The particles were dried overnight under vacuum at 

room temperature. Stöber SiO2 particles of different sizes of were prepared similarly by 

varying the reaction conditions such as concentration of ethanol or reaction temperature. 

 

2.1.2 Surface modification of colloidal SiO2 

The strategy to immobilize cobalt oxide nanoparticles was by tailoring the surface 

of Stöber SiO2 with chemical functional groups. In surface functionalization steps, the 

surface –OH groups on Stöber SiO2 were covalently modified by small molecule ligands 

or oligomers, that contain different functional groups namely, carboxyl (–C=O) or amine 

(–NH2) groups. Specifically, compounds such as methacryloxypropyltrimethoxysilane 

(MPS), aminopropyl dimethoxysilaneAPDMS, poly(acrylic acid) (PAA) and 

Acetoacetoxyethyl methacrylate  (AAEM) were used for grafting. 
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MPS was added to a colloidal (6 wt%) Stöber SiO2 solution dispersed in 70% 

ethanol in water and stirred for approximately 12 hours. The solution was held at 80oC 

for 1 hour to promote covalent bonding of the organosilane molecules to the surface of 

the silica nanoparticles[86, 87]. The amount of MPS ligand added was 50% in excess of 

that required for full coverage.  The estimate of full surface coverage was based on 25 

Å2 per molecule of MPS on the SiO2 surface. The colloidal solution was purified in a 

similar manner to Stöber SiO2 colloids. MPS functionalized silica particles prepared by 

above approach were denoted as MPS-SiO2.  Similarly, amine (-NH2) terminated 

surfaces were obtained by adding APDMS to a dispersion of Stöber SiO2 in toluene. The 

dispersion was continuously stirred for 4 hours under N2 atmosphere at room 

temperature. The colloidal solution was purified in a similar manner to Stöber SiO2 

colloids and the particles were denoted as APDMS-SiO2. 

 

Grafting of oligomers was performed by the polymerization of a monomeric 

solution (acrylic acid or AAEM) in the presence of the MPS, a coupling agent to form 

siloxane terminated oligomers[88-90]. Need typical conditions.  SiO2 colloids were then 

added to the oligomeric solution to bridge the oligomers on SiO2 surface through the 

siloxane bonds of MPS. Typically, a colloidal solution of 6 wt% of MPS-SiO2 in water and 

0.5 mmol AAEM monomer concentration was mixed for 5-10 min. The solution was 

heated to 70°C and the polymerization was initiated by 0.6 wt% KPS. The polymerization 

reaction was continued for 12 hours at 70°C. The solution was cooled and the particles 

were purified by centrifugation and washing cycles with water. The samples were dried 

and denoted as PAAEM-SiO2. PAA-SiO2 particles were synthesized in a similar manner 

to AAEM grafting method. 
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2.1.3 Synthesis of CoO nanoparticles: Control of nanoparticle size 

CoO nanoparticles with high crystallinity and narrow size distributions can be 

successfully prepared by following certain strategies learnt from the past prototypical 

systems. In the past, catalysts have been synthesized by incipient wetness impregnation 

methods for obtaining pure catalyst composites[91-94]. But this method lacks control of 

particle size in the nanoscale regime. Other methods for preparing well-controlled 

nanoparticles such as laser ablation [95-102], thermal plasma [103], high pressure 

sputtering [104], high current pulsation [105], ion beam [106], supercritical fluid assisted 

[107-110], and high energy ball-milling [111-114] are energy intensive and expensive for 

large scale production of nanoparticles. Colloidal techniques such as inverse micelle 

[115-117], sonochemical [118-122], and thermal decomposition [123-126] provide 

alternative and inexpensive ways to synthesize nanoparticles in large scale. We 

describe here the experimental details of synthesis of CoO nanoparticles of discrete 

sizes via thermal decomposition technique. 

 

For thermal decomposition method, a cobalt carbonyl precursor was allowed to 

decompose in an organic solvent maintained at a temperature approximately equal to its 

boiling point. Typically, a ~0.25gm of Co2(CO)8 was mixed into 60 ml toluene and heated 

to 110˚C in the presence of a surfactant AOT (sodium bis(2-ethylhexyl) sulfosuccinate). 

The concentration of AOT was based on a molar ratio of cobalt precursor to AOT equal 

to 0.2. Additional Co2(CO)8 was added into the solution at every 3 hour intervals. The 

solution color turned from dark orange to black once nucleation of nanoparticles was 

initiated. After 3 hours, prior to adding additional cobalt precursor, 3-4 ml of sample were 

collected and stored. AOT surfactant prevented nanoparticle aggregation by lowering 

metal-to-metal surface interactions through charge transfer. Nucleation and growth 
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kinetics were controlled by slow additions of cobalt precursor every 3 hours to obtain 

monodisperse cobalt nanoparticles of different sizes[126].  After successive additions of 

cobalt carbonyl, the final molar ratio of cobalt precursor to AOT surfactant was 

approximately equal to 10. In the case of preparing cobalt nanoparticles with two 

surfactants, a combination of AOT and BUA surfactants was used. Cobalt nanoparticles 

when exposed to ambient conditions oxidized to cobalt oxide due to their reactivity to air. 

XRD characterization techniques described below were used to confirm that the type of 

oxide was CoO. 

 

2.1.4 Preparation of CoO/SiO2 nanocomposites 

In general, conventional methods such as such as incipient wetness 

impregnation (IWI) methods have been used to obtain high metal catalyst loading on 

oxide supports for higher catalytic reactivity[127-129]. For an IWI method, a metal 

precursor is reduced from a precursor salt to metallic catalyst via calcination at very high 

temperatures. However, such catalysts often have lower dispersion and wider 

distribution of the particle sizes[130].  Another drawback of this approach is that 

calcination step results in unwanted cobalt-silicate formation thereby reducing the 

catalyst quality and purity. Our strategy was to prepare colloidal solutions of CoO 

nanoparticles and surface-modified SiO2 to two containers separately and then mix the 

two solutions to obtain CoO nanoparticles decorated on the surface of the modified-SiO2 

via self-assembly. By this approach, we intended to avoid cobalt-silicate formation in the 

synthesis step. 

 

CoO/SiO2 nanocomposites were prepared by mixing together the colloidal 

solutions of cobalt nanoparticles and surface modified SiO2. Typically, ~1gm of surface 
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functionalized silica particles MPS-SiO2, PAA-SiO2 and PAAEM-SiO2 were dispersed in 

toluene in three different beakers. 2-3 ml of CoO nanoparticle solution prepared using 

AOT as surfactant was then added to each beaker. CoO prepared from AOT and BUA 

surfactants were mixed with APDMS-SiO2 into a fourth beaker. The nanoparticles of 

CoO were immobilized on the surface of the SiO2 support by self-assembly. After few 

hours, CoO/SiO2 nanocomposites settled to the bottom, whereas the excess CoO 

nanoparticles that did not take part in self-assembly remained in the supernatant. The 

CoO/SiO2 residue was separated from free CoO nanoparticles in the supernatant by 

decantation. However, one disadvantage of this method is that it is difficult to quantify 

the amount of Co immobilization. An alternative way to quantify would be to measure 

cobalt indirectly using ICP-MS characterization. The final residue was dried at 50˚C in 

the vacuum oven for ~1day. 

 

2.2 Material characterization techniques 

A host of instrumentation tools were utilized to understand the physico-chemical 

properties of materials. TEM measurements were performed on a FEI Morgagni 268D 

where samples were prepared by drying a drop of the colloidal solution on a carbon-

support film TEM grid (Electron Microscopy Sciences, PA). SEM samples were prepared 

by drying the colloid on a double sided adhesive carbon tape fixed on a specimen stub. 

Hitachi S800 with a field emission electron gun was used to analyze the surface 

topography of catalyst supports and composites. FTIR measurements were done using 

a Nicolet Magna-IR 860 spectrometer to identify the bonding peaks. Hydrodynamic 

diameter and polydispersity of particles were estimated from DLS technique (Malvern 

Nano-S Zetasizer). Philips X’pert materials research diffractometer was used to analyze 

the crystal structure of the cobalt oxide nanoparticles. Samples for XRD were mounted 
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on a Si zero-background plate using an adhesive tape and covering the sample with 

Parafilm® to avoid spillage during measurements. Temperature programmed reduction 

method was used to measure the temperature at which cobalt oxides reduced by 

hydrogen gas to metallic cobalt using Autosorb-1® from Quantachrome Instruments. 

 

2.3 CO oxidation reaction studies using in-situ FTIR spectroscopy 

CO oxidation reaction was studied in AABSPEC #2000A, a stainless steel 

reactor equipped with zinc selenide (ZnSe) windows for in situ FTIR spectroscopy 

measurements on a Bio-RAD Excalibur FTS3000. CoO/SiO2 nanocomposites pressed 

into pellets were placed along the IR beam on a programmable hot finger inserted into 

the FTIR reactor. Actual temperatures were monitored by an external thermocouple. The 

chamber was preheated in-situ to 140˚C for 30mins to remove any water vapor and then 

cooled back to room temperature under a 30 sccm N2 flow. A gas mixture of CO (10 

sccm) and compressed dry air (20 sccm) were introduced using mass flow controllers. 

Both inlet and outlet valves were closed after 10-15 min of steady flow of gases. A new 

background signal was collected against which further spectra were compared with. 

Temperature programmed reactions were carried out by increasing the temperature from 

room temperature to 475˚C at a constant heating ramps set at 10, 7.5, 4.5 and 2˚C/min. 

The actual temperature ramps were measured as 9.7, 7.2, 4.4 and 1.9˚C/min using a 

thermocouple attached to the transmission probe. FTIR spectra were collected in 

transmission mode at regular intervals of time during the temperature programmed 

reaction. 
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2.4 Results and discussion 

Physical and chemical properties of CoO nanoparticles, colloidal SiO2 and 

CoO/SiO2 nanocomposites were analyzed using various characterization techniques. 

TEM, SEM and DLS were used to estimate the particle size shape and morphology. 

FTIR spectroscopy was used to infer the presence of chemical groups on the surface of 

the SiO2 support material. Crystallinity of CoO nanoparticles was examined using XRD 

spectroscopy. TPR techniques were used to observe reducibility of cobalt oxides to 

metallic cobalt nanoparticles. CO oxidation results obtained from in-situ FTIR studies 

were analyzed to calculate the activation energies for CO oxidation reaction for all 

nanoparticle sizes. 

 

2.4.1 Analysis of SiO2 supports using DLS, TEM, SEM and FTIR 

In the Stöber method, the solution turned turbid within a few minutes upon TEOS 

addition which indicated the nucleation of SiO2. The SiO2 size was dependent on 

reaction conditions such as nature of alcohol, alcohol-water ratio, reaction temperature 

and concentration of NH4OH[131-134]. Table 2.1 summarizes different sizes of SiO2 

colloids obtained by varying ethanol-to-water volume ratio or reaction temperature. The 

size was almost halved when temperature was raised to 40 C in the case where ethanol 

to water volume ratio was 100:8. The size analysis plot of SiO2 of different sizes 

obtained from DLS results is plotted in figure 2.1. TEM and SEM images of Stöber SiO2 

shown in figures 2.2 and 2.3 reveal that the particles are spherical in shape. Surface 

modification of SiO2 particles was verified using FTIR methods. The presence of 

chemical groups after surface modification using ligands or oligomers was inferred from 

FTIR spectroscopic measurements as shown in figure 2.4. The absorbance peak for –

OH stretching at 1400 cm-1 was removed when the surface silanol groups of Stöber SiO2 
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were replaced with organosilanes. The increase in (–C=O) peak intensity at 1723cm-1 

was observed from MPS and PAA grafting. 

 

2.4.2 DLS, TEM and XRD of CoO nanoparticles 

CoO colloids with discrete nanoparticle sizes were prepared by thermal 

decomposition technique. Figure 2.5 shows the size distribution of CoO nanoparticle 

samples obtained from DLS analysis. TEM images of two samples of CoO nanoparticles 

with size average of 2 nm and 6nm are shown Figure 2.6 and 2.7. The aggregation of 

larger nanoparticles of CoO nanoparticles may have been caused due to low surfactant 

concentration and high magnetic field interactions[135]. A surfactant helps to overcome 

metal-metal attractive van der Waals and magnetic dipole-dipole forces. [125, 126] The 

crystallinity of CoO nanoparticles prepared using decomposition technique was studied 

using XRD and high resolution TEM. The X-ray diffraction patterns of CoO nanoparticles 

are shown in figure 2.8. The peak positions were common for both samples of CoO 

prepared from single and two surfactants except for the peak at 60 (2θ). The 

appearance of this small broad peak suggests that CoO nanoparticles prepared from 

two surfactants have slightly different crystalline facets. This phenomenon has been also 

observed in other literature reports where it was found that changing the type of 

surfactants leads to changes in the shapes or sizes of nanoparticles with altered 

crystalline facet orientations[136, 137]. The XRD spectral lines were used to verify that 

the cobalt oxide synthesized was CoO in comparison to the other commonly synthesized 

oxide, Co3O4[138-140]. Using high-resolution TEM, the distances between the crystal 

planes were measured as shown in figure 2.9 to obtain the mean lattice spacing of 

2.12Å, which was consistent with the past literature reports[141]. 
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2.4.3 TEM and TPR of CoO/SiO2 nanocomposites 

The self-assembly of CoO nanoparticles on SiO2 functionalized with different 

functional groups were verified using TEM. TEM of surface modified SiO2 support 

without cobalt nanoparticled showed that the surface topography of SiO2 was smooth in 

comparison with the CoO/SiO2 nanocomposites. This feature was used as a  quick 

diagnostic to identify the presence of cobalt nanoparticles on the SiO2 surface. Carbonyl 

functional groups in MPS, AAEM or PAA and, amine functional groups in APDMS were 

target sites for CoO nanoparticles for self-assembly since carbonyl and amine groups 

were known to form physisorbed bonds to metal surfaces[142-145]. Figure 2.10, 2.11 

and 2.12 shows the self-assembly of 14nm CoO on carbonyl functionalized MPS-, 

AAEM- and PAA-SiO2 supports. There was no self-assembly of CoO with amine 

functionalized APDMS-SiO2, however, CoO nanoparticles prepared from two surfactants 

showed some interaction as shown in figure 2.13. In a two-surfactant cobalt colloidal 

system, the carboxylic acid group of the second surfactant BUA adsorbs strongly to the 

nanoparticles of cobalt with the terminal Br group pointing outwards. The hydrogen 

bonding between the -NH2 group of the aminated silica support and the terminal bromine 

of BUA contributes to the anchoring of cobalt nanoparticles on the surface[146].  Low 

resolution and high resolution TEM of CoO/MPS-SiO2 are shown in figure 2.14 and 2.15. 

From the high resolution TEM image, we can distinguish the crytalline CoO metallic 

features from amorphous SiO2 support which provides us with a qualitative verification 

that the particles on SiO2 was indeed CoO nanoparticles. 

 

TPR method was used to measure the temperature at which CoO was reduced 

to cobalt metal. In general for all metal oxides, the nature of reducibility is found to be a 

function of size and metal-support interactions[147-150]. FTIR spectra of samples before 
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and after TPR testing was taken to understand the changes in the nanocomposites 

when subjected to high temperature treatments during TPR. The results are described 

later in this section. Figure 2.16 details the TPR profiles of CoO/MPS-SiO2 composites of 

different CoO sizes. In the figure, we observe multiple peaks for 14nm CoO 

nanocomposites and single peaks for 6, 2 and 1nm CoO nanocomposites. The major 

peak at the lowest temperature for each samples is the temperature at which CoO 

reduces to Co metal. The subsequent peaks at higher temperatures are a result of 

metal-support interations. When an oxide support is present in close proximity to an 

oxide metal, the reduction temperature shifts to higher temperatures[151]. In figure 2.16 

we can see a trend in the nanoparticle size effect for CoO with respect to TPR peak 

positions. The nanocomposites with smaller CoO nanoparticles reduces at higher 

temperatures since they have a higher interaction with the SiO2 support. The 

nanocomposites with larger CoO nanoparticles, such as CoO nanoparticles of 14nm 

have lower metal-support interations that allow reduction to occur at lower temperatures. 

The subsequent peaks for 14nm CoO nanocomposites may be due to small percentage 

of smaller sized CoO nanoparticles in the sample. After the TPR run, all the 

nanocomposite samples were exposed to air and TPR testing was performed for a 

second time with the same composites. Cobalt is highly reactive to ambient air and 

undergoes oxidation. The second TPR would allow us to understand the reproducibility 

of CoO nanoparticles for hydrogen reduction. Figure 2.17 depicts the TPR profile for the 

second reduction cycle. Comparing the two TRP cycles, the reduction temperature for 

nanocomposites with 14nm CoO nanoparticles have a reduction temperature at 240̊C, 

which is lower than the reduction temperature of 280˚C observed during the first cycle. In 

addition, the reduction peak intensities have significantly dropped for all 

nanocomposites, significantly for the nanocomposites of 6, 2 and 1nm CoO nanparticles. 
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This suggests that during TPR, there may be aggregation of nanoparticles to form larger 

sized particles. 

 

To further study the effect of structural changes of CoO/SiO2 nanocomposites 

after high temperature TPR treatment, FTIR spectra of nanocomposites with 6nm CoO 

nanoparticles before and after the TPR run were collected as shown in figures 2.18 and 

2.19. The FTIR spectra in figure 2.18 shows that the organic ligands were removed 

when composites were heated to 600̊C indicated by the disappearance of 2982 cm -1 

peak which is a characteristic band for C-H bonds[152]. Figure 2.19 shows that the peak 

that corresponds to Si-O-Si band at 1100 cm-1 does not shift, which suggests the 

absence of cobalt silicate (Co-O-Si) formation[153]. Cobalt silicate is an inactive material 

that is usually formed while preparing cobalt-metal and SiO2-support based 

catalysts[154-157]. Kogelbauer et al.[158] have proposed that in the presence of a 

hydrogen gas and water, cobalt metal in contact with SiO2 have higher chances of 

forming cobalt silicates. Coulter and Sault[159] as well as Van Steen and coworkers[160] 

have postulated that even surface silanol groups present in SiO2 can react with aqueous 

cobalt complexes to form cobalt silicates. With the current characterizations from FTIR, it 

is still not clear how the CoO/SiO2 nanocomposites show lower reducibility during the 

second TPR run. Other characterizations such as XRD and EXAPS should be done to 

further understand this behavior more in detail[161]. 

 

2.4.4 Role of CoO nanoparticle size on CO oxidation reaction 

When CO is introduced into the reactor, bands at 2058, 2140 and 2170 cm-1 

were observed. The figure 2.20 depicts the spectrum obtained when CO was introduced 

into the reactor for CoO/SiO2 with CoO nanoparticle size of 2nm. The peak at 2058 cm-1 
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corresponds to the linear adsorption of CO gas on CoO surface[162] and the vibrational 

frequencies of CO in bulk gaseous phase were seen at 2140 cm-1 and 2170 cm-1. The 

appearance of 1630 cm-1 peak suggests the presence of small amounts of water vapor. 

This may be due to inherent trace water vapor present in the gas lines or storage 

cylinders. After flowing CO and air for 10-15mins, both the exit and inlet valves were 

closed. Spectra were collected as temperature was ramped from room temperature to 

475˚C at various heating rates as shown in figure 2.21. There was a decreasing trend in 

the peaks intensities for 2058, 2140 and 2170 cm-1 bands and appearance of new two 

bands at 2350 cm-1 and 2342cm-1 indicated the formation of CO2 gas. 

 

We proposed a reaction mechanism for CO oxidation reaction on CoO surface 

based on in-situ FTIR analysis. The experimental results were used to calculate the 

activation energies for the proposed reaction intermediate steps. The proposed reaction 

is as follows: 

𝐶𝑂 + 𝑂2
𝑠𝑡𝑒𝑝−1
�⎯⎯⎯� [𝐶𝑂 − 𝑂2]∗

𝑠𝑡𝑒𝑝−2
�⎯⎯⎯� 𝐶𝑂2 + 𝑏𝑦𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 

Adsorbed CO molecule reacts with O2 from air to form an intermediate denoted 

as step-1. This intermediate molecule rearranges itself on CoO nanoparticle surface and 

desorbs to form CO2 molecule, denoted above as step-2. Activation energies for step-1 

and step-2 were estimated experimentally using in-situ FTIR studies. 

 

Activation energy for step-1 was found from FTIR spectra collected for all 

experiments at various heating rates. Plots of 2058cm-1 peak height vs. temperature for 

samples of different CoO sizes are shown in figures 2.22, 2.23, 2.24 and 2.25. The peak 

height reduced as temperature was raised and began to plateau at a particular 

temperature T’ as depicted in the above mentioned figures. This plateau-onset 
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temperature T’ and the corresponding heating rates, ψ were then incorporated into an 

equation for calculating the activation energies for step-1 for different CoO sized 

nanocomposites. The model equation originally developed by Kissinger[163] and further 

extended by others [164, 165] uses an Arrhenius equation to find activation energies 

from temperature programmed studies. The linear equation that correlated ramp rate ψ, 

and the plateau-onset temperature T’ was obtained as follows: 

C
E

AR
R

E
+






−

−
=










ln

T´T´
ln 2

ψ  

where E is the activation energy for step-1, R is the universal gas constant, and A & C 

are other constants. Activation energy of step-1 was calculated from the slope −𝐸 𝑅�  

obtained from the linear plot of 









2´

ln
T
ψ  vs. 








´
1
T

.  A detailed derivation for these 

equations is provided below. 

 

The derivation for Kissinger’s equation is as follows: 

( ) ( ) ( )][1 COffTkdt
dr ′== αα

   (1) 

where α is the degree of conversion of a catalyst, T the temperature, f(α) the reaction 

mechanism function and the concentration of gas phase reactants represented as [CO]. 

Under differential conditions during a temperature programmed analysis with a linear 

heating rate, dt
dT=ψ , the gas phase dependent term is approximately a constant.  

 

Therefore, equation (1) can be re-written as 

( ) ( )α
ψ

=α fTk1
dT

d      (2) 
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where k is the rate constant given by the Arrhenius equation. 

( ) ( )RT
E

AeTk
−

=      (3)
 

 

Combining equations (2) and (3), we get 

( ) ( )α
ψ

=α −
feA

dT
d RT

E

    (4) 

The peak height profiles shown in the figures 2.22-2.25 can then be represented 

in the form of equation (4) and the plateau-onset temperature was found by 

differentiating equating the equation to zero as shown below: 
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Since, 0
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, the above equation reduces to 
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Assuming that 𝑓(𝛼), the reaction model, and maxTT =α are independent of the 

heating rate, the final expression is: 
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Therefore, activation energy for step-1 can be obtained from the slope of 
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ψ vs. 








´
1
T  

 

The Kissinger plots obtained for all nanocomposites with different CoO sized are 

depicted in figure 2.26. It was found that activation energies for step-1 followed an 

increasing trend as nanoparticle size increases. For composites with 1 and 2nm sized 

CoO nanoparticles, the T’ values obtained from the slowest heating rate, i.e., 1.9 K/min 

were not included in the activation energy calculations due to large deviation from 

linearity. This might be due to surface reconstruction during a prolong exposure to CO 

gas or aggregation of smaller nanoparticles into bigger sizes. Surface reconstruction 

behavior of a metal surface such as cobalt metal has been observed due to an 

adsorbing CO gas. [166, 167]
 

 

Activation energy for step-2 was found based on the CO2 evolution profile 

obtained from in-situ FTIR analysis. Figure 2.27 depicts moles of CO2 produced during 

the analysis of nanocomposites with different CoO sizes for heating rate of 9.7 C/min. 

This data was fitted to a rate equation to calculate the activation energy of step-2. The 

details of the derivation of the rate equation are as follows: 
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The rate of CO2 formation can be written as 

( ) ( ) )(.exp 2
2 COgRT

EA
dt
COd −=

 

where, ( )RT
EA −exp  are the kinetic constant and )( 2COg  the kinetic model for the 

reaction. For an experiment taking place under a linear heating rate ψ, the temperature-

time relationship tTT ψ+= 0  can be used to obtain 

( ) ( )
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Assuming a power law model equation [ ]nCOCOg =)( 2 for the chemical reaction 

with the order of reaction n=1, we get 
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The right hand side of this equation was obtained from the experimental values of CO2 at 

a particular time t. The left hand side of the above equation is an integral function that 

was fitted to the experimental data. The data from CO2 formation was then used in the 

regressions analysis by keeping E and A as fitting parameters. This right hand side of 

the equation was rewritten as 

𝑓 = ∝∙ 𝐼(𝐴′,𝜃) 

where, ∝ =
ψ

oAT
,  𝐴′ =

oRT
E

,  𝜃 =
oT

T
and I is the integral. The integral function was 

approximated by using relationships developed by Coats and Redfern [168, 169] to: 

𝐼 ≅
exp (−𝐴′)
(𝐴′ + 2)

�𝜃2
(𝐴′ + 2)

(𝐴′ + 2𝜃)
exp�−

𝐴′(1 − 𝜃)
𝜃 � − 1� 
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From regression analysis, E values for nanocomposites of different CoO 

nanoparticle sizes were obtained. Figure 2.28 summarizes the relationship between 

CoO nanoparticle size and activation energies of step-1 and step-2 for CO oxidation 

reaction. Smaller nanoparticles have lower activation energies demonstrating the impact 

of nanoparticles for catalytic applications. Other studies have utilized metal flat surfaces 

[170, 171] or metal clusters of Fe with 55 atoms[172] that energy barriers are lower on a 

metal sites with low coordination numbers.  

 

We have found that the activation energies to decrease as nanoparticle size 

decreases for the CO oxidation reaction that was investigated. The reduction in 

activation energies for smaller particles may be due to the percentage of low coordinated 

atoms present in smaller nanoparticles. The number of low-coordinated sites and the 

energy associated with reaction steps are both influenced by the size.[173] Therefore, 

particle size plays an important role in determining catalyst activity, especially at the 

nanometer scale. To our knowledge, this is for the first time cobalt oxide nanoparticles 

have been studied to understand the role of size in CO oxidation reaction. The 

experimental results have also provided a valuable context for computational calculation 

of reaction energetics in CO oxidation using DFT approaches (PhD dissertation by Ms. 

Nianthrini Balakrishnan). Computational calculations were used to support the activation 

values predicted by experimental results. Computational simulations also provide details 

about the reaction intermediates and the probable orientation of intermediate molecules 

proposed by the experiments.  
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2.5 Summary 

CoO nanoparticles of discrete sizes were prepared via colloidal synthesis. The 

surface of the SiO2 support surface was modified using ligands or oligomers to 

immobilize the CoO nanoparticles on the surface of the support. The weak interaction 

between the functional groups on the support and the CoO nanoparticles lead to 

anchoring of nanoparticles on the support surface. The self-assembly of CoO 

nanoparticles was observed from TEM images. Characterizations were performed to 

understand the physical and chemical properties of CoO/SiO2 nanocomposites. In-situ 

FTIR studies capable of analyzing adsorbed gas species on the catalyst surfaces were 

used. The activation energies for CO oxidation reaction and their impact on CoO 

nanoparticle size were experimentally estimated. 

 

 

 

Table 2.1. Stöber SiO2 colloids of different sizes  

Volume ratio of Ethanol 
to Water  Temperature (˚C) Diameter (nm) a 

100:27 25 486 

100:8 25 315 

100:8 40 169 

100:0 60 55 
a DLS measurements  
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Figure 2.01. DLS measurements of Stöber SiO2 colloids of different sizes. 

 
 

 
Figure 2.02. Typical TEM image of Stöber SiO2 particles 
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Figure 2.03. SEM image of Stöber SiO2 colloids 

 
 

 
Figure 2.04. FTIR spectra of surface functionalized SiO2 colloids 
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Figure 2.05. DLS of CoO nanoparticles 

 
 

 
Figure 2.06. TEM image of 2 nm CoO nanoparticles 
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Figure 2.07. TEM images 6 nm CoO nanoparticles  

 
 

 
Figure 2.08. XRD of CoO nanoparticles prepared from single and two 
surfactants 
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Figure 2.09. Measurement of lattice distance of CoO using an intensity 
vs. distance plot, obtained across a CoO nanoparticle from a hi-res TEM  

 
 

 
Figure 2.10. TEM image of CoO/MPS-SiO2  
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Figure 2.11. TEM image of CoO/AAEM-SiO2 

 
 

 
Figure 2.12. TEM image of CoO /PAA-SiO2  
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Figure 2.13. TEM of CoO/APDMS-SiO2, where CoO was prepared with 
two surfactants 
 

 

 
Figure 2.14. TEM 2nm CoO on MPS-SiO2  
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Figure 2.15. Hi-res TEM of CoO/SiO2 with 2 nm CoO size. 

 
 

 
Figure 2.16. TPR profiles of CoO/SiO2 nanocomposites of various CoO sizes  
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Figure 2.17. TPR profile obtained during the second run on CoO/SiO2 
nanocomposites of different sizes 

 
 

 
Figure 2.18. FTIR spectrum (2700 – 3600cm-1) of nanocomposites with 6 nm 
CoO before and after TPR   
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Figure 2.19. FTIR spectra (400 – 1600cm-1) of nanocomposites with 6 nm 
CoO before and after TPR 

 
 

 
Figure 2.20. FTIR spectrum collected when carbon monoxide and air was 
introduced into the reactor  
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Figure 2.21. FTIR spectra collected at various intervals of time during 
4.5°C/min temperature ramp. 

 

 
Figure 2.22. The 2058 cm-1 peak height recorded at various heating rates for 
nanocomposite with 14 nm sized CoO nanoparticles  
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Figure 2.23. The 2058 cm-1 peak height recorded at various heating rates for 
nanocomposite with 6 nm sized CoO nanoparticles 

 
 

 
Figure 2.24. The 2058 cm-1 peak height recorded at various heating rates for 
nanocomposite with 2 nm sized CoO nanoparticles  
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Figure 2.25. The 2058 cm-1 peak height recorded at various heating rates for 
nanocomposite with 1 nm sized CoO nanoparticles 

 

  
Figure 2.26. Kissinger plot to find Estep-1 from slope -E/R  
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Figure 2.27. CO2 evolution profile for nanocomposites with different sizes during the 
heating ramp of 9.7˚C/min 

 
 

 
Figure 2.28. Activation energies of step-1 and step-2 for various CoO nanoparticle 
sizes  
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CHAPTER 3: HIGH SURFACE AREA TITANIA NANOSHELLS FOR  

CARBON DIOXIDE PHOTOREDUCTION 

 
Increasing surface area is one of the key features that can help enhance product 

yield in catalytic reactions. In this chapter, a colloidal synthesis approach is described for 

the preparation of a TiO2 based photocatalyst with high surface area. Novel TiO2 

nanoshells were created by precipitating different precursors of TiO2 on polymer-core or 

SiO2-core colloidal support materials. Surface modification procedures were used to 

control precipitation of TiO2 on the different support materials. A collection of 

characterization tools were used to understand the physical and chemical characteristics 

of the novel photocatalytic nanoshells. In this chapter, CO2 photoreduction reactions 

performed using a bench scale photo-reactor are also detailed.  The performance of the 

nanoshells is contrasted to a commercial titania powder. 

 

3.1 Experimental details and material characterization 

3.1.1 Template synthesis  

Different types of support materials or templates were prepared synthesize TiO2 

shells with high surface area by creating template-core/TiO2 nanostructures. In general 

templates were two types: (a) polymer core, or (b) SiO2 core. The surfaces of these 

colloidal core materials were then functionalized with chemical functional groups that 

initiated TiO2 nucleation and growth on the surface of the template. Figure 3.1 depicts a 

general scheme of steps that were followed for TiO2 nanoshell preparation. Details on 

preparation of the polymer and SiO2 based templates are given below.  
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MPS/poly(NIPAAM-MBAA) colloidal templates is made of a cross-linked 

copolymer poly(NIPAAM-MBAA) with a siloxane shell around the copolymer core. 

Typically, 1 gm of NIPAAM monomer was copolymerized with 50 mg of N,N′ -methylene 

bis(acrylamide) (MBAA) in a 140 ml water bath maintained at 75 C under a N2 

atmosphere.  To initiate the polymerization, 200 mg of KPS was added. After 2 h of 

polymerization, 240µL MPS (25wt% of the NIPAAM monomer used) was added and the 

reaction was continued for another 4.5 h. This allowed us to create an inner core 

consisting of copolymerized NIPAAM and MBAA polymers, and the outer shell of the 

same copolymer with additional interpenetrating siloxane chains as shown in the 

schematic (Figure 3.1). After the reaction was complete, the solution was cooled to room 

temperature and centrifuged at 7500 rpm for 30 min. The supernatant was discarded 

and the precipitate was re-dispersed in water. The purification steps of centrifugation 

and re-dispersion were repeated two more times. The purified sample was denoted as 

MPS/poly(NIPAAM-MBAA). 

 

A second type of polymer template synthesized was using AAEM and 

poly(NIPAAM-MBAA) composites. These templates were prepared in a similar manner 

as MPS/poly(NIPAAM-MBAA) mentioned above. Here, after 2 h of copolymerization of 

NIPAAM and MBAA, 180 µL AAEM (16wt% of monomer) was added. The reaction was 

continued for another 9 h. In these composites, the inner core consists of copolymerized 

NIPAAM and MBAA polymers and a shell of the same copolymer with additional AAEM 

chains as depicted in Figure 3.1. The solution was cooled and the particles were purified 

by centrifugation and washing cycles with water as before. The sample was denoted as 

AAEM/poly(NIPAAM-MBAA).  
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SiO2-core based templates were composed of a SiO2 core and an outer surface 

of SiO2 grafted with short polymer chains or ligands such as poly(NIPAAM), poly(acrylic 

acid) or MPS. These chemical functional groups were grafted on the surface of SiO2 

colloids and the preparation procedures are similar to that mentioned earlier in chapter 

2, section 2.1.1.  

 

Briefly, SiO2 colloids were synthesized by the hydrolysis of TEOS in an ethanol-

water solvent. Grafting of short oligomeric chains was performed by the polymerization 

of the respective monomer solution in the presence of MPS, a coupling agent that helps 

to covalently bond the polymer chain and SiO2 surface[88-90]. For instance, to prepare 

NIPAAM-grafted SiO2, an aqueous based solution containing NIPAAM monomer and 

MPS was prepared such that the molar concentration of the monomer was 

approximately 100 times MPS concentration. The solution was heated to 60°C and the 

polymerization was initiated by 0.6 wt% KPS. After 12 hours, Stöber SiO2 particles were 

added and stirred at 60˚C for another 24 hours. The solution was cooled and the 

particles were purified by centrifugation and washing cycles with water. The colloidal 

particles were dried and denoted as NIPAAM-SiO2. The preparations of MPS-SiO2 and 

PAA-SiO2 have been detailed earlier in sections 2.1.2. SiO2-core based and polymer-

core based templates were used further for the creation of TiO2 shells via precipitation.  

 

3.1.2 TiO2 nanoshell preparation 

Different precursors of TiO2 such as tetrabutyl orthotitanate (TBOT), titanium bis-

ammonium lactato dihydroxide (TALH) or titanyl sulfate (TS) were used to create TiO2 

nanoshells on the templates that were synthesized. TBOT rapidly hydrolyzes in the 

presence of water to form TiO2, whereas TALH and TS were water soluble and relatively 
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stable compounds in aqueous solutions at room temperature. Rate of precipitation of 

TALH & TS can be accelerated by heating the precursor solutions or by adding 

precipitating agents or by both. Urea and sulfuric acid were added to TALH and TS 

solutions respectively to initiate the precipitation reaction. Due to the quick precipitating 

nature of TBOT precursor in water, TBOT precipitation was performed in ethanol rich 

solvents using SiO2-core templates functionalized with chemical groups such as MPS, 

PAA or AAEM and polymer-core templates. Since TALH & TS relatively stable in water, 

the precipitation of these precursors were performed in water solvent. 

 

To precipitate TBOT to form TiO2 shells, an ethanol solution containing 2 mM 

TBOT was prepared containing template material with a concentration of 100 mg/ml for 

SiO2-core and 50 mg/ml for polymer-core solutions. 10 ml of template solution was taken 

and approximately an equal volume of ethanol-water solution with a 90 vol% ethanol 

concentration was added drop-wise under constant mixing. The solution was kept 

stirring for another 30 min at room temperature. A basic pH was maintained by adding 

few drops of 28 wt% NH4OH during the precipitation reaction to help the deposition of 

TBOT on the surface of template rather than in the bulk solution. The TiO2 deposited 

SiO2 composites were separated from free TiO2 in the bulk solution by centrifuging the 

entire solution at 5,000 rpm. The supernatant rich in free TiO2 particles was decanted 

and the final TiO2/SiO2 composites were dried at 50˚C in the vacuum oven for ~1day. 

 

TS, a water soluble precursor was also used to create TiO2 shells. Here, a stock 

solution of TS was prepared by adding 0.0665 g of solid TS to 1.2 ml of 1 M H2SO4. To a 

30 ml polymer-core colloidal template solution containing approx 50 mg/ml template in 

water, 200 μL of the TS stock solution prepared earlier was added. The solution was 



www.manaraa.com

55 
 

heated to 90°C for ~1 hour until a turbid solution was obtained. The particles were 

purified by centrifugation and dispersing steps as followed previously. 

 

TALH was precipitated on NIPAAM-SiO2 to synthesize SiO2@TiO2 core-shell 

structures. The precipitation of TALH was initiated by heating the precursor solution in 

the presence of urea[174, 175]. Here, 1 gm of PNIPAAM-SiO2 particles were dispersed 

in aqueous solution of 3 mM TALH and 10 mM urea. After stirring for one hour at room 

temperature, the solution was refluxed at 100 C for 20 h under N2 atmosphere. TiO2/SiO2 

composites were centrifuged at 7,500 rpm for 30 min and supernatant decanted to 

separate the freely suspended TiO2 particles in the supernatant from the composites. 

The precipitate was re-dispersed in water and centrifuged again. Purification steps of 

centrifuging and dispersing in water were done a few times to remove solvents or 

unreacted chemicals. The final residual precipitate was dried at 50C in the vacuum oven 

for ~1day.  

 

The composites with a TiO2 shell were calcined at 600 ˚C by ramping the 

temperature from room temperature to 600˚C at 2 ˚C/min and maintaining at 600˚C for 2 

hours. The calcination step was performed to remove the polymer chains, grafting 

agents and other organic residues prior to performing any photocatalytic reactions. 

 

3.1.3 Preparation of co-catalyst Pt nanoparticles 

Pt co-catalyst nanoparticles were prepared to enhance in catalytic activity of TiO2 

photocatalyst. Composites of TiO2 deposited with metal(s) have been gaining interest in 

the field of phocatalysis for increasing activity of TiO2 photocatalyst[63, 176, 177]. A co-

catalyst metal in contact with a photocatalyst such as TiO2 helps to suppress electron-
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hole recombination thereby increasing the availability of photo-exited charges to carry 

out in redox reactions[63, 74-82].  Pt metal have been widely used a co-catalyst in 

promoting reduction half-reaction during photocatalytic redox reactions[178]. Pt 

nanoparticles were prepared from NaBH4 reduction method[179]. Typically, 200μL of 

112mM NaBH4 was rapidly added to a 10ml of aqueous solution of 1mM K2PtCl6 and 

3.88mM citric acid, trisodium salt dihydrate. Immediately upon NaBH4 addition, 

transparent yellow colored solution turned to black color confirming the formation of Pt 

nanoparticles. Pt nanoparticle colloid solution was mixed with TiO2 nanoshell composites 

to prepare Pt deposited TiO2 nanocomposites for photoreduction experiments. Typically 

4ml of Pt colloidal was mixed with 1g of TiO2 photocatalyst.  

 

3.1.4 Procedure for CO2 photoreduction  

Photoreduction experiments were carried out in an aluminum reactor with two 

ports for inlet and outlet flow of gases.  The reactor had three optical windows - one 

glass window at the top for photoirradiation and two ZnSe windows on two sides for 

infrared measurements. The detailed mechanical drawings and design measurements of 

the photo-reactor and other components are given in figures 3.2-3.8.  

 

The transmission range of the glass window ranged from 330nm to 670nm to 

allow irradiation in the long UV and visible wavelengths. A cylindrical insert made of 

Teflon® was placed inside the photo-reactor to reduce the reactor volume and thereby, 

increase the concentration of species in the gas phase. Approximately 1gm of the 

different photocatalyst was filled and leveled into a circular Teflon dish with 1 mm depth.  

The final exposed cross-sectional area of the photocatalyst bed exposed to the incident 

radiation was 9mm2.  
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During the testing, the reactor was evacuated for 5-10 min using a vacuum pump 

set for 20 inches Hg vacuum pressure.  CO2 gas saturated with water was allowed to 

flow into the evacuated reactor. These evacuate-fill cycles were repeated 4 more times 

to eliminate any remnant ambient gases and other impurities. CO2 gas bubbled through 

water was then continuously purged through the reactor for 1.5 h at ambient temperature 

and pressure to saturate the contents of the reactor and the photocatalyst. The reactor 

pressure was first increased to 10 psi by closing the outlet valve and then the inlet flow 

was also stopped.  Photo-irradiation was performed in a batch mode for 6 h using a 100 

W Hg lamp placed vertically downward on a wooden stand as a light source. The 

hydrocarbon formation inside the photo-reactor was measured using FTIR. Two sets of 

control experiments were conducted. Experiments were conducted in dark in the 

presence of reactant gases and photocatalyst samples. The second set of experiments 

was conducted using N2 gas in the place of CO2 under UV-light conditions.The infrared 

absorption was recorded on a Magna-R 860 spectrometer (Nicolet, WI, USA). The peak 

responses of CH4 and CO from FTIR analysis were obtained using a separate calibration 

of the FTIR signal to known quantities of CH4 and CO.  

 

3.2 Results and discussion 

The structural and chemical characteristics of TiO2 shell nanocomposites were 

studied using different characterization tools and techniques. To verify TiO2 shell 

formation on different templates, TEM images of just the template-core were taken and 

compared with the TEM images after TiO2 precipitation on the core.  
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3.2.1 DLS and TEM analysis of templates 

MPS/poly(NIPAAM-MBAA) and AAEM/poly(NIPAAM-MBAA) hybrid template 

materials were analyzed using DLS and TEM to characterize the size, shape and 

thermal responsiveness of the hybrid core. Poly(NIPAAM) is a thermally responsive 

material, i.e. it undergoes a physical change in the presence of thermal stimuli. Heskins 

and Guillet[180] were the first to investigate the thermal responsive nature of 

poly(NIPAAM) and found the lower critical solution temperature (LCST) of the polymer to 

be 32°C.  

 

Figure 3.9 and 3.10 displays the variation in hydrodynamic size of these hybrid 

materials as a function of solution temperature. The analysis shown was performed 

using DLS at different temperatures ranging from 20°C to 40°C for samples with a 

concentration of ~0.001 wt% template-core material in water. The size of 

MPS/poly(NIPAAM-MBAA) varies from ~430 nm below LCST and ~310nm above LCST 

as depicted in figure 3.9. In comparison, the size of hybrid AAEM/poly(NIPAAM-MBAA) 

changes from ~600 nm below LCST and ~370 nm above LCST as shown in figure 3.10.  

TEM images shown in figures 3.11-3.13 suggest that polymer templates were 

approximately spherical in shape and fairly uniform in size. The TEM images of SiO2-

core based templates such as MPS-SiO2, PAA-SiO2 and NIPAAM-SiO2 (figure 3.14) 

were also analyzed. In contrast to the denser, cross-linked polymer cores, the short 

oligomers or ligands that were grafted on SiO2 could not be visualized in TEM.  

 

3.2.2. TEM analysis of TiO2 precipitation on templates 

The precipitation of TBOT precursor on different templates rich in –C=O were 

verified by TEM analysis. Figure 3.15 shows a thin layer of TiO2 formed after the 
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precipitation of TiO2 on MPS-SiO2 template. In contrast to MPS, AAEM is a diketone and 

has two –C=O groups per molecule. Figure 3.16 shows that TiO2 shell coverage and 

thickness was improved when AAEM-SiO2 was used when compared to MPS-SiO2. The 

precipitation of TiO2 on SiO2-template surface can also be initiated with the addition of 

acetonitrile. Figure 3.17 shows a TEM image of TiO2 shells precipitated on AAEM-SiO2 

in the presence of 3-4 drops of acetonitrile as compared to NH4OH in figure 3.16. It was 

observed that without the presence of small amounts of NH4OH or acetonitrile the TiO2 

tends to precipitate in the bulk solution than on the template surface. In contrast to the 

small molecule ligands MPS and AAEM, TBOT precipitation was also successful on 

PAA-SiO2 in the presence of NH4OH to form a thin layer of TiO2. TEM of TiO2 shell on 

PAA-SiO2 is shown in figure 3.18. TBOT precipitation on NIPAAM-SiO2 was not 

observed which may be due to the hydrophobic nature of TBOT and the hydrophilic 

nature of NIPAAM. These results illustrate that a thin shell of TiO2 can be precipitated 

using TBOT precursor on SiO2-core based templates by applying suitable surface 

modification treatments to initiate nucleation and growth of TiO2 on the surface of the 

template. 

 

The precipitation of TBOT on polymer-core based templates was also examined. 

Figures 3.19 and 3.20 depicts the polymer-core based composite MPS/poly(NIPAAM-

MBAA) obtained after TBOT precipitation. The composites obtained using 

AAEM/poly(NIPAAM-MBAA) are shown in figures 3.21 and 3.22. The morphology of this 

composite was different from MPS based hybrid template. Here, the TiO2 nanoparticles 

were largely uniform in size and were decorated around the polymer core. We believe 

that a reason for this type of arrangement could be the strong interaction between 

diketone chemical groups of AAEM and TiO2 particles formed during precipitation. 
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However, a complete shell of TiO2 was not formed plausibly due to the quick nucleation 

and precipitation of TBOT. Figure 3.23 shows the TEM image of TS precipitated on a 

MPS/poly(NIPAAM-MBAA) polymer-core template. At the end of this reaction, clumps of 

white precipitate were observed at the bottom of the flask. From the TEM analysis, it is 

clear that TS and TBOT were not good choices as precursors for TiO2 shell creation on 

the polymer-core templates.   

 

TALH is a stable and water soluble precursor that hydrolyzes slowly. This 

property was useful to tune the precipitation and deposition of TiO2 on NIPAAM modified 

templates. The precursor TALH did not hydrolyze in water at ambient conditions. The 

hydrolysis of TALH was driven by OH- free radicals. A slow release of OH- radicals was 

achieved by adding urea which hydrolyzes TALH slowly at room temperature but more 

rapidly at high temperatures. Figures 3.24 and 3.25 shows the TEM image of TALH 

treated with MPS/poly(NIPAAM-MBAA) and NIPAAM-SiO2. It was seen from TEM image 

of MPS/poly(NIPAAM-MBAA) that there was higher contrast in the inner core rather than 

on the MPS rich outer surface of the polymer template. This may be because TALH 

prefers to bind with the hydrophilic inner core of poly(NIPAAM-MBAA) than hydrophobic 

MPS rich outer surface.  

 

In the case of precipitation of TALH on NIPAAM-SiO2, rough TiO2 shells were 

created on NIPAAM-SiO2 templates as shown in figure 3.25.  Figure 3.26 reveals that 

these rough and high surface area nanoshells were maintained after calcinations of the 

composites at 500̊ C for 2 h. The morphological structure of TiO 2 was maintained even 

after high temperature calcinations and is indicative of good thermal stability of TiO2 
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shells against rupture. The rough morphology with high surface area can be a beneficial 

feature for catalytic applications.  

 

Pt nanoparticles synthesized via NaBH4 reduction method, were analyzed using 

DLS and TEM as shown in figures 3.27 and 3.28. In figure 3.27, the intensity plot shows 

that there are two populations of nanoparticles one with ~4 nm and the other with ~50 

nm average hydrodynamic diameter. The volume% plot in figure 3.27 and the TEM 

image in figure 3.28 suggest that the majority of the nanoparticles are in the 4 nm range 

and the 50 nm size observed in DLS measurements could be due to aggregation of Pt 

nanoparticles. Figure 3.29 displays TEM image of Pt deposited SiO2@TiO2. There was 

no significant difference in the TEM images of bare SiO2@TiO2 and Pt deposited 

SiO2@TiO2 due to the low TEM resolution that failed to discern the small nanoparticles. 

Another reason for the lack of verification of Pt deposition on the surface of SiO2@TiO2 

composites could be the low percentage of Pt in the sample, which was roughly 

estimated to be 0.05% on total weight basis. Visual inspection revealed that the sample 

was however, slightly grayish in color after the Pt addition. 

 

3.2.3. Diffuse reflectance, BET and XRD of TiO2 nanoshells 

BET of TiO2 nanoshells created using NIPAAM-SiO2 and TALH precursor were 

performed to estimate the surface area of nanoshell composites. Calcined samples were 

degassed at 80˚C for ~4 hours prior to performing BET analysis on Autosorb-1. The total 

surface area of TiO2 nanoshell composites prepared from precipitation of TALH on 

NIPAAM-SiO2 was found to be 34.95 m2/gm. The total surface area of Stöber SiO2 was 

only 12.68 m2/gm, which suggests a significant increase in surface area accompanies 

the creation of nanoshells structures on SiO2 colloids.  



www.manaraa.com

62 
 

The UV-Vis diffuse reflectance spectra of the TiO2 nanoshell composites were 

also measured to investigate the optical response of the photocatalyst composite. The 

position of SiO2@TiO2 spectra is blue shifted from commercially available P25 TiO2 

signifying a higher band gap energy than P25 TiO2 as shown in figure 3.30. This blue 

shift may be due to the smaller crystal size of TiO2 in the SiO2@TiO2 composites than 

compared to P25 TiO2[181, 182]. The crystallinity of TiO2 was analyzed using XRD as 

shown in figure 3.31. The broadening of peaks in the XRD patterns can also be due to 

the smaller crystalline size of TiO2[183]. 

 

3.2.4 Results on CO2 photoreduction 

FTIR spectra were collected at different intervals of time during photoreduction 

experiments through the ZnSe windows. TiO2 nanoshell composites and nanoshells 

deposited with Pt were compared with commercially available DegussaTM P25 TiO2 and 

Pt deposited P25 TiO2. The conversion of CO2 to CH4 and CO is shown in FTIR spectra 

in figures 3.32-3.35. The peak at 3015 cm-1 in figures corresponds to CH4 and the two 

peaks at 2172 cm-1 and 2143 cm-1 corresponds to CO.  

 

We found an increase in production of CO and CH4 as a function of time. Peak 

heights of CH4 and CO were measured for all samples after 6 h of photoreduction 

reaction. The peak heights were correlated to molar concentrations of CH4 and CO by 

plotting a calibration curve from known concentrations of CH4 and CO. The calibration 

plots are shown in figures 3.36 and 3.37 for CH4 gas and CO gas respectively. Figure 

3.38 displays the photocatalytic yields of TiO2 nanoshells and Pt deposited TiO2 

nanoshell composites, and their comparison with P25 TiO2.  Figure  3.38 also shows a 

total electronic yield calculated based on the theoretical number of electrons required for 
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the formation of one molecule of CH4 or CO per molecule of CO2. From redox potential 

diagrams[184, 185], it can be found that the theoretical number of electrons required for 

the reduction of one molecule of CO2 to form one molecule of CH4 or CO is 8 or 2 

electrons respectively.  

 

The catalytic activity of SiO2@TiO2 composites was comparatively lower than 

commercial Aeroxide P25 TiO2. It was observed that the product yield is lower for TiO2 

nanoshell composites without the presence of Pt co-catalyst. The low yields may be due 

to the type of precursor used for this study that created an anatase phase of TiO2 that 

was different from crystalline features of P25 TiO2. [181, 183] Similar lower yields were 

obtained by Lee and coworkers[186] when they used photocatalysts prepared from 

TALH and reported lower activity than commercially available P25. Another possibility of 

lower yields may be due to higher electron-hole recombination or large build-up of photo-

excited charges without proceeding in redox reactions. There have been some reports in 

the past studying this phenomena and possible ways to measure this factor 

quantitatively[187-189]. However, using our setup qualitatively comparison was not 

feasible. Pt deposited TiO2 nanoshells showed improved catalytic activity compared to 

commercially available TiO2. This is an indication that Pt helps to reduce electron-hole 

recombination and build-up of photo-excited charges on the surface of TiO2.  

 

3.3 Summary 

We have shown here a colloidal approach to synthesize high surface area 

catalyst and establish its role in catalysis.  Colloidal preparation techniques were used to 

prepare different template materials to create TiO2 shells. TALH precursor was found to 

be optimal for the creation of novel core-shell TiO2 composites.  The nanoshell structure 
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led to increase in surface area. An added advantage of TiO2 shells over TiO2 

nanoparticles was that the core-shell composites were relatively heavier than TiO2 

nanoparticles and therefore settled to the bottom. This may be beneficial in industrial 

applications to easily recover the catalyst from a liquid suspension after the reaction has 

ended, without resorting to expensive centrifugation methods.  Material characterizations 

such as TEM, DLS, BET and UV-Vis reflectance spectroscopy were performed to 

understand the physical and chemical properties of the nanocomposites. CO2 

photoreduction experiments were carried out in a home built photoreactor. The catalytic 

performance testing showed that high surface area TiO2 nanoshells have better catalytic 

activity when a co-catalyst such as Pt was deposited.  
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Figure 3.01. Schematic of TiO2 nanoshells preparation on templates  
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Figure 3.02. A photograph of photoreactor, cylindrical block made of Delrin and 
sample dish made of Teflon 
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Figure 3.03. Mechanical drawings detailing the design of photoreactor body 
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Figure 3.04. Design of end cap design used for the three windows in the of photoreactor 
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Figure 3.05. Schematic drawing of the holder used to place the photoreactor inside the 
FTIR setup 
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Figure 3.06. Sketch of the wooden stand used to place the UV lamp in a vertically 
downward position  
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Figure 3.07. Sketch of the sample dish used to place the photocatalyst powder 
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Figure 3.08. Drawing of the cylindrical block made of Delrin placed inside the 
photoreactor to reduce reactor volume 
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Figure 3.09. Temperature responsive of MPS/poly(NIPAAM-MBAA)  

 

 
Figure 3.10. Temperature responsive behavior of AAEM / poly(NIPAAM-MBAA   
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Figure 3.11. TEM image of MPS-poly(NIPAAM-MBAA) 
 

 

 
Figure 3.12. TEM image of AAEM-poly(NIPAAM-MBAA) (low 
magnification)  
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Figure 3.13. TEM image of AAEM-poly(NIPAAM-MBAA) (high 
magnification) 

 
 

 
Figure 3.14. TEM image of NIPAAM-SiO2  
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Figure 3.15. TiO2 shell on MPS-SiO2 using TBOT precursor  

 
 

 
Figure 3.16. TiO2 shell on AAEM-SiO2 using TBOT precursor in the 
presence of NH4OH  
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Figure 3.17. TiO2 shell on AAEM-SiO2 using TBOT precursor in the 
presence of acetonitrile 

 
 

 
Figure 3.18. TiO2 shell on PAA-SiO2 using TBOT precursor in the 
presence of NH4OH  
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Figure 3.19. TEM of TiO2 shell on MPS-poly(NIPAAM-MBAA) using TBOT  

 
 

 
Figure 3.20. TEM of TiO2 shell on MPS-poly(NIPAAM-MBAA) using TBOT   
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Figure 3.21. TEM of TiO2 shell on AAEM -poly(NIPAAM-MBAA) using 
TBOT (low magnification) 

 
 

 
Figure 3.22. TEM of TiO2 shell on AAEM -poly(NIPAAM-MBAA) using 
TBOT (high magnification)  
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Figure 3.23. TEM of TS precipitation on MPS-poly(NIPAAM-MBAA) 
template 

 
 

 
Figure 3.24. TEM of MPS-poly(NIPAAM-MBAA) template treated with 
TALH   
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Figure 3.25. TEM of TiO2 nanoshells prepared from TALH precursor and 
NIPAAM-SiO2 

 
 

 
Figure 3.26. TEM of TiO2 nanoshells prepared from TALH precursor and 
NIPAAM-SiO2 after calcination  
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Figure 3.27. Size distribution of Pt nanoparticles from dynamic light scattering 
measurements 

 
 

 
Figure 3.28. TEM image of Pt nanoparticles 
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Figure 3.29. TEM image of Pt deposited TiO2 nanoshells 

 
 

 
Figure 3.30. UV-Vis diffusive reflectance spectrum of the TiO2 nanoshells 
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Figure 3.31. XRD diffraction pattern of TiO2 nanoshell composites prepared on 
NIPAAM-SiO2 

 
 

 
Figure 3.32. FTIR spectra of CH4 and CO formation observed for TiO2 nanoshell 
composite. A split x-axis is used for the wavenumber scale.   
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Figure 3.33. FTIR spectra of CH4 and CO formation observed for Pt deposited 
TiO2 nanoshell composite. A split x-axis is used for the wavenumber scale.  

 
 

 
Figure 3.34. FTIR spectra of CO and CH4 formation for P25 TiO2 during 
photoreduction. A split x-axis is used for the wavenumber scale.   
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Figure 3.35. FTIR spectra of CO and CH4 formation from Pt deposited P25 
TiO2 during photoreduction. A split x-axis is used for the wavenumber scale.  

 
 

 
Figure 3.36. Calibration curve for relating CH4 concentration to 3015 cm-1peak 
height in a FTIR spectrum   
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Figure 3.37. Calibration curve for relating CO gas concentration to 2172 cm-1 
peak height in a FTIR spectrum 

  
 
 

 
Figure 3.38. Photocatalytic performance of composites of TiO2 nanoshells 
and P25 TiO2  
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CHAPTER 4: BIMETALLIC AND CORE-SHELL PLASMONIC NANOPARTICLES TO 

ENHANCE CARBON DIOXIDE PHOTOREDUCTION 

 

In this chapter, we describe syntheses and characterization of nanoparticles with 

different composition and structure that has unique physical, chemical and optical 

properties. Ag, Pt and bimetallic Ag-Pt nanoparticles, and Ag@SiO2 core-shell 

nanoparticles were prepared to understand the role of structure-property relationships 

for catalytic photoreduction of CO2. Commercially available P25 TiO2 was used as the 

primary photocatalyst and its performance was enhanced by deposition of co-catalytic 

and plasmonic nanoparticles on its surface.  These nanoparticles comprised of Ag, Pt or 

bimetallic Ag-Pt nanoparticles and Ag@SiO2 core-shell nanoparticles. Various 

characterization tools were used to study the properties of nanoparticles. CO2 

photoreduction reactions were performed using a home built photo-reactor and the 

results are presented to establish principles for rational design of nanoparticles that can 

enhance photoreduction of CO2 with titania, which is a widely available and stable 

material. 

 

4.1 Experimental details and material characterization  

4.1.1 Synthesis of Ag, Pt and Ag-Pt nanoparticles 

In this chapter, we have explored Ag and bimetallic Ag-Pt co-catalyst 

nanoparticles for two reasons.  First, even though Pt metal has been used widely in the 

past for a multitude of catalytic reactions, Pt is approximately 50 times more expensive 
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than Ag[83].  Secondly, Ag and bimetallic Ag-Pt nanoparticles lead to distinct optical 

properties. For example, Ag nanoparticles have characteristic absorbance band in the 

near UV region whereas the bimetallic Ag-Pt nanoparticles can show absorbance in the 

visible spectrum depending on the composition of the particles.  

 

Ag nanoparticles were synthesized by adding 200μL of freshly prepared 112 mM 

NaBH4 to a 10 ml aqueous solution of 1 mM AgNO3 and 3.1 mM citric acid, trisodium salt 

dihydrate[179]. The color of solution turned dark green-yellow immediately after the 

addition of reducing agent NaBH4. Approximately 240 mg of polyvinylpyrrolidone, a 

stabilizing agent was added. The contents were stirred continuously and left overnight to 

allow residual NaBH4 to decompose completely.  

 

Another method known as Turkevich method was also used to prepare Ag 

nanoparticles[190, 191]. Typically, 20 ml silver salt solution of 1 mM AgNO3 

concentration was heated to 110°C. When the solution started to bubble 0.4 ml of 38.8 

mM sodium citrate solution was added rapidly[192]. The solution was refluxed under N2 

gas for 1 h. 

 

Pt nanoparticles were prepared from NaBH4 reduction method similar to Ag 

nanoparticle preparation mentioned above. Typically, 200 μL of 112 mM NaBH4 was 

rapidly added to a 10 ml of aqueous solution containing 1 mM K2PtCl6 and 3.88 mM citric 

acid, trisodium salt dehydrate. The reduction of Pt salt to metallic nanoparticles of Pt was 

confirmed from the change in solution color upon NaBH4 addition. 
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To prepare Ag-Pt bimetallic nanoparticles, a specific volume of 1 mM K2PtCl4 

was mixed with Ag nanoparticle colloids such that the initial volume percentage of Pt salt 

was set to four different values: 4, 6.7, 10 and 20.   The resulting particles are referred to 

as Ag-Pt(4), Ag-Pt(6.7), Ag-Pt(10), and Ag-Pt(20). 

 

When Pt salt was added, silver atoms on the surface of Ag nanoparticles were 

replaced by Pt ions according to the galvanic replacement reaction[193] as shown 

below. 

 

  𝑃𝑡𝐶𝑙6(𝑎𝑞)
2− +  4 𝐴𝑔(𝑠) →  𝑃𝑡(𝑠) +  4𝐴𝑔(𝑎𝑞)

+ +  6𝐶𝑙(𝑎𝑞)
−   

 

Since four Ag atoms are replaced by one Pt atom, a non-epiaxial growth of Pt 

layer proceeded resulting in a partially covered Pt shell around the Ag core with lower Pt 

concentration, and to a fully covered shell as Pt concentration was increased. Careful 

control over the Pt salt addition is necessary in this synthesis as an increase in Pt salt 

can cause the shell to dissolve into islands of Pt when diffusion of Pt and Ag ions takes 

place along the Pt shell[194, 195].  

 

Ag, Pt, and bimetallic Ag-Pt nanoparticles were analyzed using TEM and UV-Vis 

absorbance spectroscopy to characterize nanoparticle size, shape and optical behavior.  

 

4.1.2 Core-shell Ag@SiO2 plasmonic nanoparticle synthesis 

To create a SiO2 shell on Ag nanoparticles, TEOS diluted in ethanol was added 

immediately after Ag nanoparticles were prepared (approximately 5-10 min after the 

green-yellow color was observed when the Ag nanoparticles were synthesized). The 
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deposition of SiO2 coating was initiated by the addition of dimethylamine into the 

solution[196]. The final concentrations of TEOS, DMA and water (from Ag colloids) were 

approximately 7 mM, 0.6 M and 14 M respectively.  To create a SiO2 shell on the Ag 

nanoparticles prepared using Turkevich method, heating was stopped during the Ag 

particle preparation and the hot Ag nanoparticle colloidal solution was allowed to cool to 

room temperature. Then 10 ml silver nanoparticle colloid was added to a 28 ml ethanol 

bath containing 70 μL TEOS. After 1-2 min of stirring the contents well, 1.75 ml of DMA 

was added. The core-shell Ag@SiO2 nanoparticles were analyzed using TEM and UV-

Vis absorbance spectroscopy.  

 

4.1.3 Preparation of TiO2 photocatalyst nanocomposite 

Commercially available AeroxideTM P25 TiO2 was used for all experiments. Co-

catalyst deposited TiO2 photocatalyst composites were prepared by adding 4ml of Ag, Pt 

or Ag-Pt colloid solutions to ~1 gm of TiO2. The contents were sonicated 15 min and 

vortex mixed for 6 h. To separate out the solvent, the sample was centrifuged at 

8,500rpm for 40min. The supernatant was decanted and the nanocomposites were 

redispersed in water. The purification steps of redispersing and centrifuging were 

repeated three more times. The final precipitate was dried in vacuum and stored in dark 

to avoid interaction with ambient light.  

 

To prepare TiO2 photocatalyst composite containing plasmonic Ag@SiO2, 

samples were prepared by mixing 7.5ml of Ag@SiO2 colloidal solution with the above 

photocatalyst composites. Purification steps were done 3-4 times to remove remnant 

organic residues of PVP and solvents.  
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4.1.4 CO2 photoreduction experimental setup 

Photoreduction experiments were carried out in the home-built aluminum reactor 

described in chapter 3 (section 3.1.4). Only a brief description of the reactor features will 

be mentioned in this chapter. For detailed drawings, refer to chapter 3, figures 3.2-3.8. 

The aluminum reactor has two ports for inlet and outlet flow for gases.  The reactor had 

three optical windows - one glass window at the top for photoirradiation and two ZnSe 

windows on two sides for infrared measurements. Approximately 1gm of the 

photocatalyst was filled and leveled into a circular Teflon dish. All other reaction 

parameters and pretreatment conditions were similar to the photoreduction experiments 

mentioned in chapter 3.  Photo-irradiation was performed in a batch mode for 6 h using a 

100 W Hg lamp. The hydrocarbon formation inside the photo-reactor was measured 

using a Magna-R 860 FTIR spectrometer (Nicolet, WI, USA). The peak responses of 

CH4 and CO from FTIR analysis were obtained using a separate calibration of the FTIR 

signal to known quantities of CH4 and CO. The calibration curves are given in figures 

3.36 and 3.37. 

 

4.2 Results and discussion 

4.2.1 TEM, DLS and UV-Vis analysis of nanoparticles 

When Ag nanoparticles were formed, the transparent, colorless solution changed 

to a yellow-green color. Ag nanoparticles were measured to be ~10nm in size from TEM 

images as shown in figure 4.1. Figures 4.2 and 4.2 are TEM images of Ag-Pt bimetallic 

nanoparticles synthesized by adding different amounts of Pt salt into the Ag hydrosol. 

These TEM images suggest that there were structural changes to Ag nanoparticles 

when Pt salt was added. The TEM image in figure 4.3 shows dotted circular features that 
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may be due to the dissolution of the Ag atoms in the core during the galvanic 

replacement process. Similar observations have been reported previously. [194, 195]  

 

DLS was used to measure the hydrodynamic diameter of Ag, Pt and bimetallic 

Ag-Pt nanoparticles. Figures 4.4 and 4.5 depict size distribution of particles for Ag and 

Ag-Pt nanoparticles. From the intensity distribution plots shown in figure 4.4, we can see 

that the particle sizes are in two ranges; one in the 10nm range and the other in the 

100nm range. The volume% plot in figure 4.5 suggests that the colloidal solutions are 

fairly uniform in size with only a small population of particles in the 100nm range. The 

two figures can be also used to understand how the addition of Pt salt modifies the 

particle structure. From figure 4.4 it was observed that the peak maximum of first peak 

was centered at 6.5 nm for Ag nanoparticles. As Pt was added, there was initially a slight 

increase in nanoparticle size. For the Ag-Pt(10) sample, we observe a small shoulder 

peak at 4 nm suggesting nanoparticles are beginning to rupture to smaller sizes. 

However, the intensity% plot in figure 4.5 suggests that the percentage of nanoparticles 

in the 4 nm size range was fairly negligible.  

 

Pt nanoparticle size and morphology were characterized similarly using TEM and 

DLS. The TEM and DLS characterization of Pt nanoparticles are detailed in chapter 3. 

Figure 3.27 show the intensity% and volume% plots obtained from DLS analysis. These 

plots suggest that the average nanoparticle size of pure Pt nanoparticles were ~5 nm. 

The second peak at ~50nm in the figure 3.27 may be due to aggregation of Pt 

nanoparticle. The aggregations of Pt nanoparticles into lumps of 40-100nm sizes were 

also observed from TEM analysis as seen in figure 3.28.  
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The optical responses of Ag, Pt and bimetallic Ag-Pt nanoparticles were 

measured using UV-Vis spectroscopy. Figure 4.6 depicts the absorbance measured for 

these colloidal nanoparticles. As Pt content increased, there was a red-shift of the peak 

maximum as well as a decrease in the intensity of absorption. Pure Pt nanoparticles 

show no peaks in the near UV or visible regions. The optical band of Ag nanoparticles 

synthesized via NaBH4 reduction method is centered at 386nm. The peak maximum 

shifts by ~30 nm and the intensity of the peak dropped by 50% for sample prepared from 

Pt salt solution of 10 vol% in the Ag colloidal solution. For samples with 20% Pt salt 

concentration, the absorbance intensity decreases by a factor of ~4. Therefore, we 

observe different optical properties of bimetallic Ag-Pt nanoparticles compared to pure 

Ag or Pt nanoparticles. 

 

The TEM and UV-Vis spectra were analyzed for Ag@SiO2 nanoparticles to 

understand the nanoparticle size, morphology and absorbance bands. Figures 4.7 and 

4.8 depict TEM images of Ag-core SiO2 shell nanoparticles. The shell thickness was 

~75nm for the Ag@SiO2 nanoparticles with the Ag nanoparticle core size of ~10nm 

prepared earlier via NaBH4 reduction method. Figure 4.9 depicts UV-Vis spectra shows 

a comparison of Ag nanoparticles and Ag@SiO2 nanoparticles. The UV-spectra of 

Ag@SiO2 had red-shifted by ~20nm.  

 

Figure 4.10 shows the TEM analysis of Ag nanoparticles synthesized via 

Turkevich method. The silver nanoparticles formed are larger than nanoparticles 

synthesized via NaBH4 reduction method. DLS measurements of these larger Ag 

samples prior to SiO2 shell creation is depicted in figure 4.11. The DLS analysis 

suggests that there are two peaks where second peak was centered at ~50nm. 
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Therefore, there is reasonable agreement between the DLS and the TEM results. The 

UV-Vis absorbance spectra of Ag@SiO2 synthesized is shown in figure 4.12. It was 

observed a shell causes a ~30nm red-shift in the peak of Ag@SiO2 core-shell particles 

relative to the peak for pure Ag nanoparticles.  

 

4.2.2 Photocatalytic performance of nanocomposites  

The FTIR spectra were collected at various intervals of time during 

photoreduction inside the aluminum reactor. FTIR spectra obtained for P25 TiO2 at 

different time intervals are depicted in Figure 4.13. The formation of CO was observed 

from bands at 2140 and 2170 cm-1 and formation of CH4 was confirmed by the peak at 

3017 cm-1.  It was observed that the primary product from P25 TiO2 was CO. Similar 

FTIR spectra obtained from TiO2 composites prepared by mixing TiO2 with Pt, Ag, 

bimetallic Ag-Pt(4), Ag-Pt(6.7) and Ag-Pt(10) are shown in figures 4.14-4.18. It was 

evident from the FTIR analysis that the product yields and the selectivity of products 

were different when co-catalysts of different elemental composition were used.  Figures 

4.19-4.23 shows the FTIR spectra of CO and CH4 obtained using plasmonic Ag@SiO2 

core-shell nanoparticles mixed with above mentioned samples such as P25 TiO2, and 

P25 TiO2 with Ag, Pt, bimetallic Ag-Pt(6.7) and Ag-Pt(10). In all cases, the CO and CH4 

formation increased with time.  

 

The yields obtained after 6 h of photo-irradiation are summarized in figure 4.24. 

The total electronic yields in figure 4.24 suggest that plasmonic Ag@SiO2 core-shell 

nanoparticles have enhanced photocatalytic activity. We believe that plasmonic 

Ag@SiO2 increases the overall yield by generating electron-hole pairs to participate in 

redox reactions. P25 TiO2 forms CO as a primary product during CO2 photoreduction. 
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With the addition of plasmonic nanoparticles, there was an increase in CO production on 

P25 TiO2. On the other hand, when a metal such as Ag or Pt is in contact with a 

semiconductor, there is a tendency for the electrons from the TiO2 conduction band to 

flow towards Ag (or Pt) surface. In the case of core-shell nanoparticles, this electron flow 

was reduced by the SiO2 coating. Photo-reactions thus occurred on TiO2 semiconductor 

surface alone. This could have been the reason for similar product selectivity for P25 

TiO2 and Ag@SiO2 on TiO2. When Ag, Pt and bimetallic Ag-Pt nanoparticles are used, 

the photo excited electrons in the TiO2 conduction band are pulled by the metal 

nanoparticles due to their co-catalytic nature. For bimetallic Ag-Pt co-catalyst, an 

improvement in yield was observed compared to pure Pt or Ag, as shown in figure 4.24.  

 

By combining plasmonic effect and co-catalytic effect we observe an 8-fold 

increase in electronic yield compared to P25 TiO2. Lower yields were observed for Ag 

co-catalysts or Ag co-catalysts combined with plasmonic nanoparticles than their Pt 

counterparts. This is because, due to the plasmonic nature of Ag, quantized charging 

was induced by the incident light that results in accumulation of conduction electrons. 

[188, 189] As a consequence, the overall Fermi level equilibrates to a quasi-level altering 

overall energetics of reaction. In other words, photo-electrons tend to accumulate on the 

catalyst surface that comprises of Ag co-catalyst. On the other hand, Pt behaves like an 

ohmic contact[189] where photo-excited charges transferred rapidly from catalyst 

surface to an electrolyte. A schematic showing plausible electron-hole excitations and 

pathways are shown in figure 4.25. 

 

Similar photoreduction experiments were conducted by replacing the glass 

window on top of photo-reactor with a quartz window. The quartz window transmitted 
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UVC to infrared light whereas, the transmission of glass window was restricted within 

UVA to visible region. The transmission spectra of glass and quartz windows used is 

given in figure 4.31. The FTIR spectra showing CO and CH4 produced during these 

photoreduction experiments are shown in figures 4.26-4.29. Summary of photocatalytic 

performance based on total electronic yield and CH4 selectivity during deep UV photo-

irradiation is depicted in figure 4.30. In this case, we find that co-catalyst addition was 

not beneficial for improvement in yield. However, methane yield was slightly improved 

for P25 TiO2 with added co-catalyst. This is similar to UVA photoirradiation results 

mentioned earlier where bimetallics showed a better performance than pure Ag or Pt for 

experiments with quartz window.  

  

4.3 Summary 

Ag, Pt, bimetallic Ag-Pt and Ag@SiO2 core-shell nanoparticles were synthesized. 

Co-catalytic Ag, Pt and bimetallic nanoparticles helped in transfer of photo-excited 

electrons from photocatalyst nanocomposite to electron donating molecule such as CO2. 

The role of Ag@SiO2 core-shell nanoparticles was to induce plasmonic effect to increase 

the generation of electron-hole pairs. CH4 selectivity was improved greatly when 

bimetallic Ag-Pt co-catalytic nanoparticles were used. We found there was a significant 

increase in catalytic activity when both co-catalytic and plasmonic nanoparticles were 

used in combination.  

  



www.manaraa.com

98 
 

 
Figure 4.01. TEM of Ag nanoparticles 

 
 
 

 
Figure 4.02. TEM of bimetallic Ag-Pt(10) 
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Figure 4.03. TEM of bimetallic Ag-Pt(20) 
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Figure 4.04. Size distribution of Ag and bimetallic Ag-Pt nanoparticles: 
intensity% obtained from  DLS analysis 
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Figure 4.05. Size distribution of Ag and bimetallic Ag-Pt nanoparticles: 
volume% obtained from DLS analysis 
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Figure 4.06. UV-Vis absorbance spectra of Ag, Pt and bimetallic Ag-Pt 
nanoparticles with different Pt concentrations 
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Figure 4.07. TEM of Ag&SiO2 for Ag nanoparticle prepared using NaBH4 
reduction method 

 
 

 
Figure 4.08. Low magnification TEM image of Ag&SiO2 for Ag 
nanoparticle prepared using NaBH4 reduction method 

  



www.manaraa.com

104 
 

 
Figure 4.09. UV-Vis absorbance spectra of Ag@SiO2 and Ag nanoparticles 
prepared using NaBH4 reduction method. 

 
 
 

 
Figure 4.10. TEM image of Ag&SiO2 using Ag nanoparticle prepared via 
Turkevich method 

  

Ab
so

rb
an

ce
 (a

.u
.)

700600500400300
Wavelength (nm)

Ag

Ag@SiO2

~20nm



www.manaraa.com

105 
 

 
Figure 4.11. DLS of Ag nanoparticles synthesized via Turkevich method 

 
 

 
Figure 4.12. UV-Vis spectrum of Ag and Ag@SiO2, where Ag was prepared 
using Turkevich method  
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Figure 4.13. FTIR spectra of CO and CH4 formation from native TiO2 during 
photoreduction. A split x-axis is used for the wavenumber scale.  

 
 

 
Figure 4.14. FTIR spectra of CO and CH4 formation from Pt/TiO2 during 
photoreduction. A split x-axis is used for the wavenumber scale.  
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Figure 4.15. FTIR spectra of CO and CH4 formation from Ag/TiO2 during 
photoreduction. A split x-axis is used for the wavenumber scale.  

 
 

 
Figure 4.16. FTIR spectra of CO and CH4 formation from Ag-Pt(4)/TiO2 during 
photoreduction. A split x-axis is used for the wavenumber scale.  
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Figure 4.17. FTIR spectra of CO and CH4 formation from Ag-Pt(6.7)/TiO2 during 
photoreduction. A split x-axis is used for the wavenumber scale.  

 
 

 
Figure 4.18. FTIR spectra of CO and CH4 formation from Ag-Pt(10)/TiO2 during 
photoreduction. A split x-axis is used for the wavenumber scale.  
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Figure 4.19. FTIR spectra of CO and CH4 formation from Ag@SiO2/TiO2 
during photoreduction. A split x-axis is used for the wavenumber scale.  

 
 

 
Figure 4.20. FTIR spectra of CO and CH4 formation from Ag@SiO2/Ag/TiO2 
during photoreduction. A split x-axis is used for the wavenumber scale.  
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Figure 4.21. FTIR spectra of CO and CH4 formation from Ag@SiO2/Pt/TiO2 
during photoreduction. A split x-axis is used for the wavenumber scale.  

 
 

 
Figure 4.22. FTIR spectra of CO and CH4 formation from Ag@SiO2/Ag-
Pt(6.7)/TiO2 during photoreduction. A split x-axis is used for the wavenumber 
scale.  
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Figure 4.23. FTIR spectra of CO and CH4 formation from Ag@SiO2/Ag-
Pt(10)/TiO2 during photoreduction. A split x-axis is used for the wavenumber 
scale.  
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Figure 4.24. Performance of photocatalyst composites after 6 h of irradiation. The 
term plasm denotes the photocatalyst samples with plasmonic Ag@SiO2 core-
shell nanoparticles.  
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Figure 4.25. Different photo excited charge pathways subsequent to electron-hole 
generation assisted by plasmonic Ag@SiO2 core-shell nanoparticles: case (a) to 
semiconductor surface, case (b) to Pt nanoparticle surface, case (c) to Ag 
nanoparticle surface, and case (d) to bimetallic Ag-Pt surface 
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Figure 4.26. FTIR spectra of CO and CH4 formation from native TiO2 during 
photoreduction using quartz window. A split x-axis is used for the wavenumber 
scale. 

 
 

 
Figure 4.27. FTIR spectra of CO and CH4 formation from Ag/TiO2 during 
photoreduction using quartz window. A split x-axis is used for the wavenumber 
scale. 

  

An
so

rb
an

ce
 (a

.u
.)

220021002000

Wavenumber (cm-1)

3400320030002800

6h

4h 11m

2h 50m

2h

1h

Ab
so

rb
an

ce
 (a

.u
.)

220021002000

Wavenumber (cm-1)

3400320030002800

6h

5h

3h 9m

2h 

1h 



www.manaraa.com

115 
 

 
Figure 4.28. FTIR spectra of CO and CH4 formation from Pt/TiO2 during 
photoreduction using quartz window. A split x-axis is used for the wavenumber 
scale. 

 
 

 
Figure 4.29. FTIR spectra of CO and CH4 formation from Ag-Pt(4)/TiO2 during 
photoreduction using quartz window. A split x-axis is used for the wavenumber 
scale. 
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Figure 4.30. Performance of photocatalyst samples after 6 hours of irradiation 
using quartz window  

 
 

 
Figure 4.31. Transmission spectra of glass and quartz windows that were used 
during photoreduction experiments  
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CHAPTER 5: SUMMARY, CONCLUSIONS AND FUTURE WORK 

 

5.1 Summary and conclusions 

In this doctoral research, we have used novel colloidal routes to effectively 

control nanomaterial features and demonstrate how physical and chemical 

characteristics of nanomaterials can impact catalytic reactions, specifically the oxidation 

of CO and the photoreduction of CO2.  Using surfactant mediated synthesis we have 

carried out systematic variation of the catalytic nanoparticle size and studies its role.  

Novel nanoshell geometry has been used to explore the impact of surface area in 

photocatalysis. And finally, variations in elemental composition of co-catalytic 

nanoparticles in combination with core-shell plasmonic particles have been investigated 

for enhancing photoreduction reactions. 

 

In chapter 2, the role of nanoparticle size of cobalt oxide for CO oxidation 

catalysis was investigated using advanced in-situ FTIR spectroscopy. We synthesized 

CoO catalyst particles with nanometer control over their average size.  Nanoparticles 

ranging from 1 to 14nm were decorated on SiO2 colloid supports via self-assembly 

approaches. By using this novel approach, we were able to directly estimate the impact 

of catalyst size on activation energy for CO oxidation reaction. To our knowledge, this is 

the first study of its kind.  A major finding from the experiments was that a two-step 

mechanism for CO oxidation could be predicted. The activation energies obtained from 

the experimental studies were found to be a function of nanoparticle size. The two-step 
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mechanism predicted from experiments was validated using DFT calculations (PhD 

dissertation by Ms. Nianthrini Balakrishnan).  This strategy of using colloidal techniques 

to prepare a model catalyst for investigation of size effect, the use of temperature 

programmed in-situ IR to probe kinetics, and to combine the experimental results with 

theoretical approaches can be a powerful tool to study catalytic reactions. 

 

In chapter 3, we have demonstrated the synthesis of novel TiO2 nanoshells with 

high surface area. Nanoshells of TiO2 around colloidal SiO2 were prepared by surface 

functionalization methods. Oligomeric chains of poly(NIPAAM) were carefully grafted on 

SiO2 surface to initiate deposition of a TiO2 precursor.  This is the first time that 

nanoshells of TiO2 have been experimentally synthesized.  The photocatalytic activity of 

the TiO2 nanoshells was measured using a home-build reactor for CO2 photoreduction 

reaction.  We found that in the presence of water vapor, CO2 can be successfully 

converted to synthetic hydrocarbon fuels such as CH4 using the novel nanoshell 

structures which minimizes the use of bulk titania material.  Further improvements in the 

CO2 photoreduction yields were found by using a platinum co-catalyst on the TiO2 

nanoshell. We believe that the nanoshell structure can be optimized and can form the 

basis of improved photocatalytic yields. 

 

Chapter 4 detailed results wherein colloidal nanoparticles of Ag, Pt and bimetallic 

nanoparticles of Ag-Pt with different Pt content were synthesized and their optical 

properties were measured using UV-Vis absorbance spectroscopy. These nanoparticles 

with different elemental compositions were deposited on a commercially available P25 

TiO2 to demonstrate the role of elemental composition of co-catalysts nanoparticles for 

CO2 reduction photocatalysis. It was found that bimetallic Ag-Pt co-catalyst nanoparticles 
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showed improved photocatalytic yield and product selectivity. Core-shell nanoparticles 

with Ag core and SiO2 shell that possess plasmonic character were prepared to enhance 

the catalytic activity of TiO2 photocatalyst during CO2 photoreduction reaction. The inner 

Ag core has plasmonic character that enhances the electromagnetic field near the TiO2 

surface. The SiO2 shell serves as an insulating barrier for the photo-electrons from 

travelling from TiO2 surface to the inner Ag core. The unique core-shell geometric 

structure of Ag@SiO2 enhanced the photocatalytic activity by increasing the electron-

hole pair generations with a TiO2 semiconductor during photocatalysis.  

 

Overall, this dissertation provides insights to novel colloidal preparation routes to 

synthesize nanomaterials of discrete sizes, high surface area, different elemental 

composition and specific core-shell geometric structures. In addition, this dissertation 

has demonstrated the correlation between the structure-property relationships of 

nanomaterials to two catalytic reactions: CO oxidation and CO2 photoreduction.  

 

5.2 Future work 

We believe that the research pursued in this doctoral project lays the groundwork 

for other work in the field of nanomaterial synthesis. For example, the valuable insights 

gained from the preparation of CoO nanoparticles with precise control of size can be 

extended to synthesize CoO nanoparticles of different shapes. Wang and coworkers[52] 

have recently shown that a flat cobalt oxide surface when subjected to femtosecond 

lasers transforms its surface to spike like periodic features. It has been demonstrated 

that these periodic features have unique capability to produce synthetic hydrocarbons 

from CO2 and water when irradiated directly under sunlight. This phenomenon is due to 

the enhancement in the photon absorption by nanostructured spike-like features. Cobalt 
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nanoparticles with shapes that impart them with a plasmonic character or similar photon 

absorptions as the spike-like surfaces may be used for CO2 photoreduction reactions. 

The feasibility of this hypothesis is supported by our preliminary work that shows that 

nano-triangles of cobalt oxide possess a plasmonic band in the visible region. The TEM 

and UV-Vis absorbance spectra of cobalt oxide nano-triangles from this preliminary work 

are shown in figures 5.1 and 5.2. The colloidal approaches for spherical nanoparticle 

preparation mentioned in chapter 2 were extremely useful in the synthesis of the cobalt 

nano-triangles[136]. It is clear that colloidal approaches can be a viable alternative 

method to produce nanoparticles in large scales when compared to more energy 

intensive methods such as femtosecond laser etching methods. 

 

 Techniques developed for TiO2 nanoshell creation can be expanded to fabricate 

new material composites containing TiO2 coatings with high surface area. These 

coatings can be used to not only enhance the material properties but also to diversify the 

applications of the resulting composites. For instance, ZnO, a metal oxide has been 

used in nanoelectronics, sensors, light-emitting diodes, photocatalysis, and 

nanopiezotronics due to its unique semiconducting, piezoelectric, and pyroelectric 

properties[197, 198]. ZnO has shown stability under low humidity environment[199]; 

however, it undergoes photolysis in the presence of moisture under strong UV 

irradiation[200, 201]. By coating TiO2 on ZnO, this synergistic combination improves the 

stability of ZnO since TiO2 has higher oxidizing power than ZnO [39, 202, 203]. Irannejad 

and coworkers have observed that there was an improvement in photocatalytic activity of 

ZnO rods were coated with TiO2 compared to uncoated ZnO rods[177]. Park and 

coworkers have demonstrated the benefit of coating photoelectrodes made of ZnO with 

TiO2 for achieving higher power conversion efficiency[204]. TiO2 deposited on RuO2 via 
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reactive sputtering method[205] shows an improvement in the mechanical, optical, 

electrical, and photoconductive properties compared to native RuO2, a metal oxide used 

as interconnects in electronic devices such as resistors[206, 207]. Thin coatings of TiO2 

are an ideal choice to complement the transparent and conducting properties of Ga2O3, 

a material used in optoelectronic devices for flat panel displays, solar energy conversion 

devices and optical limiters for UV and thermostable sensors[185, 208]. Chang and 

coworkers[209] have demonstrated CVD methods to effectively deposit TiO2 on Ga2O3.  

Zhang and coworkers[210] have shown the preparation of TiO2 nanocable arrays on Si 

substrates by using a vapor phase deposition method. Macák and coworkers have 

synthesized highly porous TiO2 nanotubes with high aspect ratios by tailoring the 

conditions during electrochemical anodization of titanium[42]. Chu and coworkers also 

applied electrochemical anodization techniques to synthesize a three-dimensional highly 

porous TiO2-SiO2-TeO2-Al2O3 photocatalyst composite[46]. Grimes’ research group have 

synthesized self-aligned highly ordered TiO2 nanotube arrays by anodization methods 

and used as a photocatalyst for reduction of CO2 to synthetic hydrocarbons[48, 50]. 

Yang and coworkers[211] have demonstrated the preparation of thin-film 

photoelectrodes containing hollow TiO2 hemispheres via a combination of colloidal 

templating and RF-sputtering methods. However, most of these methods involve vapor 

deposition, layer-by-layer coating, or electrochemical deposition and these approaches 

have limited scalability as they are expensive and time consuming due to the multiple 

assembly steps involved in the preparation steps to obtain TiO2 of sufficient 

thickness[212-220]. In comparison, the use of polymer templating to create nanoshells of 

TiO2 is simpler and more versatile. 
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The syntheses procedures developed for bimetallic nanoparticles and core-shell 

plasmonic nanoparticles can be used in combination with polymer templating method to 

create multi-functional surfaces with high surface area and porosity. For instance, by 

using a mixture containing an appropriate polymer template, titania, bimetallic co-

catalysts and plasmonic nanoparticles, the preparation of high surface area panels or 

electrodes using colloidal approaches may become possible as shown schematically in 

figure 5.3. By coating the flat surface by dip coating and further heat or UV treatment, 

porous photocatalyst films can be prepared with embedded nanoparticles. The 

embedded co-catalyst nanoparticles serve as electron-hole transferring sites and 

plasmonic nanoparticles serve as electron-hole boosting sites. These films can be used 

for direct photoreactions of CO2 reduction, water splitting and degradation reactions, or 

as photoelectrodes.  These novel preparation techniques can be beneficial for 

photocatalytic and photovoltaic industries to manufacture multifunctional films via 

inexpensive routes. 

 

 
Figure 5.01. TEM image of cobalt oxide nano-triangle 
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Figure 5.02. UV-Vis absorbance spectrum of cobalt oxide nano-triangles 
in o-dichlorobenzene 

 

 
Figure 5.03. Schematic of preparation of porous high surface area 
multifunctional titania film 
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Appendix A: Nomenclature 

 

AAEM  Acetoacetoxyethyl methacrylate   

Ag   Silver 

AgCl   Silver chloride 

Ag-Pt  Silver-platinum  

Al   Aluminum 

Al2O3  Alumina 

AOT   sodium bis(2-ethylhexyl) sulfosuccinate 

APDMS  N-Aminoethyl aminopropyl methyl dimethoxysilane 

Au   Gold 

Au@SiO2  Gold-core silica shell 

BUA   11-Bromoundecanoic acid 

CeO2  Ceria 

CO   Carbon monoxide 

Co   Cobalt 

CO2   Carbon dioxide 

CoO   Cobalt oxide 

Cr   Chromium 

DFT   Density functional theory 

Fe   Iron 

FTIR   Fourier transform infra red 

FTS   Fischer Tropsch synthesis 

H2   Hydrogen 

IR   Infrared 
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Appendix A: (Continued) 

 

Ir   Iridium 

Mn    Manganese 

Mo   Molybdenum 

MPS   Methacryloxy propyltrimethoxysilane 

N2   Nitrogen 

NH3   Ammonia 

Ni   Nickel 

NIPAAM  N-isoproplyacrylamide 

PAA   Polyacrylic acid 

Pb   Lead 

Pd   Palladium 

Pd-Cu  Palladium-copper  

Pt    Platinum 

Rh   Rhodium 

Ru   Ruthenium 

SiO2   Silica 

SiO2@Au  Silica-core gold shell 

Ta   Tantalum 

TeO2   Telluria 

TiO2   Titania 

TOF   Turn over frequency 

UV   Ultraviolet 

UV-Vis  Ultraviolet-visible 
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Appendix A: (Continued) 

 

V   Vanadium 

W   Tungsten 

XRD   X-ray diffraction 

Zr   Zirconium 

ZrO2   Zirconia 
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